Let f(x, t): R2×R→ R be a C2-function with respect to t∈R, f(x,0) =0, f(x, t) ~ebt2 as t→+∞ for somc b>0. Under suitable conditions on f(x, t), author shows that for g∈L2 (R2), g(x)≥ 0, the following sem...Let f(x, t): R2×R→ R be a C2-function with respect to t∈R, f(x,0) =0, f(x, t) ~ebt2 as t→+∞ for somc b>0. Under suitable conditions on f(x, t), author shows that for g∈L2 (R2), g(x)≥ 0, the following semilinear clliptic problem:has at least two distinct positive solutions for any λ∈(0, λ*), at least one positive solution for any λ∈ [λ*, λ*] and has no positive solntion for all λ>λ*. It is also proved that λ*≤λ*< +∞.展开更多
In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an op...In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an open bounded domain with smooth boundary, 1 〈 q 〈 2, λ 〉 0. 2*= 2N/N-2 is the critical Sobolev exponent, f ∈L2*/2N/N-2 is nonzero and nonnegative, and g E (Ω) is a positive function with k local maximum points. By the Nehari method and variational method, k + 1 positive solutions are obtained. Our results complement and optimize the previous work by Lin [MR2870946, Nonlinear Anal. 75(2012) 2660-26711.展开更多
In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation me...In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation method in critical point theory.展开更多
This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* su...This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* such that (1)λ has at least one positive solution if λ ∈ (0, λ*) and no positive solutions if λ > λ*. Furthermore, (1)λ has at least one positive solution when λ = λ*, and at least two positive solutions when λ ∈ (0, λ*) and . Finally, the authors obtain a multiplicity result with positive energy of (1)λ when 0 < m < p - 1 < q = (Np)/(N-p) - 1.展开更多
In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|&...In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|<sup>γ</sup></sup>at +∞, with γ=N/N-1, m≥1, b】0.展开更多
文摘Let f(x, t): R2×R→ R be a C2-function with respect to t∈R, f(x,0) =0, f(x, t) ~ebt2 as t→+∞ for somc b>0. Under suitable conditions on f(x, t), author shows that for g∈L2 (R2), g(x)≥ 0, the following semilinear clliptic problem:has at least two distinct positive solutions for any λ∈(0, λ*), at least one positive solution for any λ∈ [λ*, λ*] and has no positive solntion for all λ>λ*. It is also proved that λ*≤λ*< +∞.
基金Supported by National Natural Science Foundation of China(11471267)the Doctoral Scientific Research Funds of China West Normal University(15D006 and 16E014)+1 种基金Meritocracy Research Funds of China West Normal University(17YC383)Natural Science Foundation of Education of Guizhou Province(KY[2016]046)
文摘In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an open bounded domain with smooth boundary, 1 〈 q 〈 2, λ 〉 0. 2*= 2N/N-2 is the critical Sobolev exponent, f ∈L2*/2N/N-2 is nonzero and nonnegative, and g E (Ω) is a positive function with k local maximum points. By the Nehari method and variational method, k + 1 positive solutions are obtained. Our results complement and optimize the previous work by Lin [MR2870946, Nonlinear Anal. 75(2012) 2660-26711.
基金Supported by National Natural Science Foundation of China(11071198)
文摘In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation method in critical point theory.
文摘This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* such that (1)λ has at least one positive solution if λ ∈ (0, λ*) and no positive solutions if λ > λ*. Furthermore, (1)λ has at least one positive solution when λ = λ*, and at least two positive solutions when λ ∈ (0, λ*) and . Finally, the authors obtain a multiplicity result with positive energy of (1)λ when 0 < m < p - 1 < q = (Np)/(N-p) - 1.
基金Supported by the Youth FoundationNatural Science Foundation, People's Republic of China.
文摘In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|<sup>γ</sup></sup>at +∞, with γ=N/N-1, m≥1, b】0.