Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe...Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.展开更多
Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching...Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy.展开更多
The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics...The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics of C-S-H samples were analyzed by XRD, IR and SEM. The experimental results showed that the d-spacing of (002), (110) and (020) decreased, the d-spacing of (200) increased, and the d-spacing of (310) varied randomly, the polymerization of silica tetrahedra of C-S-H decreased, and morphology of C-S-H samples varied from sheet shapes to long reticular fibers as C/S ratio increased.展开更多
In gas turbines, thermal barrier coatings (TBCs) applied by air plasma spraying are widely used to lower the temperature of hot components. To analyze the characteristics of TBCs such as residual stress, bond streng...In gas turbines, thermal barrier coatings (TBCs) applied by air plasma spraying are widely used to lower the temperature of hot components. To analyze the characteristics of TBCs such as residual stress, bond strength, fracture toughness, and crack propagation ratio, the Young's modulus and Poisson's ratio are important parameters. For TBC is a brittle and thin film, it is desirable to evaluate those properties while the coatings are bonded to a substrate. An atmospheric plasma spray MCrAIY bond coat and Yttria stabilized zirconia (YSZ) top coat are deposited onto a nickel-base superalloy GH150 substrate. The Young's modulus and Poisson's ratio are measured by cantilever beam bending with NDI. The method will be developed to test the Young' s modulus and Poisson ratio of other multilayer systems.展开更多
The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a m...The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.展开更多
The experimental test of co-incinerating Chinese raw municipal solid waste (MSW) and coal in a laboratory-scale tubular reactor was first reported in present study, and the emission of normal gas components and the ...The experimental test of co-incinerating Chinese raw municipal solid waste (MSW) and coal in a laboratory-scale tubular reactor was first reported in present study, and the emission of normal gas components and the effects of the S/Cl molar ratio or coal mixing percentages on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) emission were investigated and discussed. The results indicated that OCDD was the only PCDD homologues since others like TCDD-HpCDD was hardly detected, while as the categories of PCDF homologues were comparatively much more general. The amount of PCDD was much larger than that of PCDF in all operating conditions. Since ZPCDF/∑PCDD〈〈1, the dominant role of the precursor formation was proven in our experimental conductions. With increasing the coal addition to MSW (from 0 to 16%), PCDD and PCDF were reduced considerably. Coal and MSW may suppress the PCDD/F emissions efficiently (over 95%) during the MSW incineration process. The PCDD/F suppression results of the present study could be helpful guidance to the industrial application of Chinese MSW and auxiliary coal co-incineration processes. The PCDD/F stack emission data of two industrial incinerators using co-incineration technology in China seem to have a great positive reduction of PCDDs/Fs.展开更多
The generalized mixture rule(GMR) is used to provide a unified framework for describing Young’s(E),shear(G) and bulk(K) moduli, Lame parameter(l), and P- and S-wave velocities(Vpand Vs) as a function of porosity in v...The generalized mixture rule(GMR) is used to provide a unified framework for describing Young’s(E),shear(G) and bulk(K) moduli, Lame parameter(l), and P- and S-wave velocities(Vpand Vs) as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and l of each material are systematically different and display consistent correlations with the Poisson’s ratio of the nonporous material(v0). For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson’s ratio(n) remains constant is at v0=0.2, and J(G) > J(E) > J(K) > J(l) and J(G) < J(E) < J(K) < J(l) for materials with v0> 0.2 and v0< 0.2, respectively.J(Vs) > J(Vp) and J(Vs) < J(Vp) for the materials with v0> 0.2 and v0< 0.2, respectively. The effective n increases, decreases and remains unchanged with increasing porosity for the materials with v0< 0.2,v0> 0.2 and v0=0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the n fixed point decreases nonlinearly with decreasing pore aspect ratio(a: width/length). With increasing depth or pressure, cracks with smaller a values are progressively closed, making the n fixed point rise and finally reach to the point at v0=0.2.展开更多
Seismic tomography can provide both fine P-wave and S-wave velocity structures of the crust and upper mantle. In addition, with proper computation, Poisson's ratio images from the seismic velocities can be determined...Seismic tomography can provide both fine P-wave and S-wave velocity structures of the crust and upper mantle. In addition, with proper computation, Poisson's ratio images from the seismic velocities can be determined. However, it is unknown whether Poisson's ratio images have any advantages when compared with the P-wave and S-wave velocity images. For the purposes of this study, high- resolution seismic tomography under the eastern part of North China region was used to determine detailed 3-D crustal P- and S-wave seismic velocities structure, as well as Poisson's ratio images. Results of Poisson's ratio imaging show high Poisson's ratio (high-PR) anomalies located in the Hengshan-North Taihang-Zhangjiakou (H-NT-Z) region, demonstrating that Poisson's ratio imaging can provide new geophysical constraints for regional tectonic evolution. The H-NT-Z region shows a prominent and continuous high-PR anomaly in the upper crust. Based on Poisson's ratio images at different depths, we find that this high-PR anomaly is extending down to the middle crust with thickness up to about 26 kin. According to rock physical property measurements and other geological data, this crustal Poisson's ratio anomaly can be explained by Mesozoic partial melting of the upper mantle and basaltic magma underplating related to the lithospheric thinning of the North China craton.展开更多
BACKGROUND In spite of developing medical technologies to discover the etiopathogenesis of diseases and developments in the treatment of coronary artery disease, acute coronary syndromes(ACS) continue to be the main c...BACKGROUND In spite of developing medical technologies to discover the etiopathogenesis of diseases and developments in the treatment of coronary artery disease, acute coronary syndromes(ACS) continue to be the main cause of mortality and morbidity worldwide. New cardiac biomarkers and techniques are needed to help provide rapid diagnosis in order to evaluate risk in coronary artery patients.AIM To evaluate the effects of R to S ratio(RSR) in the electrocardiograph of patients with ACS, from the point of the arising complication after myocardial infarction(MI), to three-vessel disease(TVD) and mortality.METHODS The data of 1,296 patients with ACS, who presented to the emergency department of our hospital with chest pain between January 2014 and December2018 and were admitted to the cardiology clinic, were retrospectively included in this cross-sectional cohort study. Patients with an RSR value less than I were assigned to group Ⅰ, while those with an RSR value greater than Ⅰ were assigned to group Ⅱ.RESULTS In our study, 466(35.9%) of the 1,296 patients, 357(38.3%) in group 1 and 109(29.9%) in group 2, were female, with a mean age of 61.56 ± 9.42. ST-elevation MI 573(44.2%), unstable angina(UA) 502(38.7%) and non ST-elevation MI 220(17%)were more prevalent in group Ⅰ. Acute anterior MI 263(20.3) in group Ⅰ, and acute inferior MI 184(14.2) in group Ⅱ was higher. Ischemic heart failure was the most common complication. In group Ⅱ, the red cell distribution width(RDW) was 15.42 ± 1.82, the gensini score was 48.39 ± 36.44, the left ventricular ejection fraction was 41.17 ± 10.41, the TVD was 111(8.5), and the mortality rate was 72(5.6), which was significantly higher than group Ⅰ RDW; in MI with ST and nonST-elevation, in TVD, mortality and complications were high and low in UA. In single and multivariate regression analyses, the variables were associated with ACS risk.CONCLUSION RSR levels may be an auxiliary predictive value in ACS in terms of complications developing after MI, TVD, and mortality.展开更多
The prognosis of hepatocellular carcinoma(HCC) depends on tumor extension as well as hepatic function.Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC;the ChildPugh class...The prognosis of hepatocellular carcinoma(HCC) depends on tumor extension as well as hepatic function.Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC;the ChildPugh classif ication system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease,using serum albumin level to achieve accurate assessment of the status of protein metabolism.However,insuff icient attention has been given to the status of amino acid(AA) metabolism in chronic liver disease and HCC.Fischer's ratio is the molar ratio of branched-chain AAs(BCAAs:leucine,valine,isoleucine) to aromatic AAs(phenylalanine,tyrosine) and is important for assessing liver metabolism,hepatic functional reserve and the severity of liver dysfunction.Although this ratio is diff icult to determine in clinical situations,BCAAs/tyrosine molar concentration ratio(BTR) has been proposed as a simpler substitute.BTR correlates with various liver function examinations,including markers of hepatic f ibrosis,hepatic blood flow and hepatocyte function,and can thus be considered as reflecting the degree of hepatic impairment.This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.展开更多
The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the ...The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the static corrections and improving the S/N ratio for pre-stack seismic data. Suppression and elimination of various other distortions has been implemented as well. Due to the fact that the S/N ratio is improved, the resolution of the seismic data is also improved.展开更多
Inherent drawbacks associated with drug-eluting stents have prompted the development of bioresorbable cardiovascular stents.Additive manufacturing(3-dimentional(3D)printing)has been widely applied in medical devices.I...Inherent drawbacks associated with drug-eluting stents have prompted the development of bioresorbable cardiovascular stents.Additive manufacturing(3-dimentional(3D)printing)has been widely applied in medical devices.In this study,we develop a novel screw extrusion-based 3D printing system with a new designed mini-screw extruder to fabricate stents.A stent with a zero Poisson’s ratio(ZPR)structure is designed,and a preliminary monofilament test is conducted to investigate appropriate fabrication parameters.3D-printed stents with different geometric structures are fabricated and analyzed by observation of the surface morphology.An evaluation of the mechanical properties and a preliminary biological evaluation of 3D-printed stents with different parameters are carried out.In conclusion,the screw extrusion-based 3D printing system shows potential for customizable stent fabrication.展开更多
In this paper the insurer's solvency ratio model with or without jump diffusion process in the presence of financial distress cost is constructed, where an insurer's solvency ratio is characterized by a Markov-modul...In this paper the insurer's solvency ratio model with or without jump diffusion process in the presence of financial distress cost is constructed, where an insurer's solvency ratio is characterized by a Markov-modulated dynamics. By Girsanov's theorem and the option pricing formula, the expected present value of shareholders' terminal payoff is provided.展开更多
Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poi...Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable.展开更多
Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since t...Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since the FCG process is affected by various factors,no universal model exists due to the complexity of the mechanisms.Most of the existing models are obtained by fitting the experimental data and could hardly describe the integrative effect of most existing factors simultaneously.In order to account for the integrative effect of specimen parameters,material property and loading conditions on FCG process,a new model named integrative influence factor model(IIF) is proposed based on the plasticity-induced crack closure theory.Accordingly to the predictions of crack opening ratio(γ) and effective stress intensity factor range ratio(U) with different material under various loading conditions,predictions of γ and U by the IIF model are completely identical to the theoretical results from the plane stress state to the plane strain state when Poisson's ratio equals 1/3.When Poisson's ratio equals 0.3,predictions of γ and U by the IIF model are larger than the predictions by the existing model,and more close to the theoretical results.In addition,it describes the influence of R ratios on γ and U effectively in the whole region from-1.0 to 1.0.Moreover,several sets of test data of FCG rates in 5 kinds of aluminum alloys with various specimen thicknesses under different loading conditions are used to validate the IIF model,most of the test data are situated on the predicted curves or between the two curves that represent the specimen with different thicknesses under the same stress ratio.Some of the test data slightly departure from the predictions by the IIF model due to the surface roughness and errors in measurement.Besides,based on the analysis of the physical rule of crack opening ratios,a relative thickness of specimen is defined to describe the influence of material property,specimen thickness and so forth on FCG characteristics conveniently.In conclusion,the relative thickness of specimen simplifies the expression of FCG characteristic and provides a general parameter to analyze the fatigue characteristics of different materials with various thicknesses under different loading conditions.The IIF model describes the integrative effect of existing influence factors explicitly and quantitatively,and provides a helpful tool for fatigue property estimation of practical component and experiment design.展开更多
In this study, extender and bender element tests were conducted investigating the small-strain Poisson’s ratio of variable sands, with a focus on the effect of stress anisotropy in order to quantify the sensitivity o...In this study, extender and bender element tests were conducted investigating the small-strain Poisson’s ratio of variable sands, with a focus on the effect of stress anisotropy in order to quantify the sensitivity of Poisson’s ratio to the applied deviatoric stress. Four different uniform sands were tested, including a biogenic sand, a crushed rock and two natural sands, covering a wide range of particle shapes. From these sands, eleven samples were prepared in the laboratory and were tested under variable stress paths,maintaining a constant mean effective pressure while increasing the deviatoric compressive load. Under the application of these given stress paths, the data analysis indicated that the sensitivity of Poisson’s ratio to the stress ratio was more pronounced for sands with irregularly shaped particles in comparison to sands with fairly rounded and spherical grains. For sands with very irregularly shaped particles, the increase of Poisson’s ratio from the isotropic to the anisotropic stress state reached 50%, while this increase for natural sands with fairly rounded particles was in the order of 20%.展开更多
Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform samp...Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.展开更多
The role of Fe/S ratios(ω, g/g) in the uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium was investigated. The results showed good uranium e...The role of Fe/S ratios(ω, g/g) in the uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium was investigated. The results showed good uranium extraction with over 90% at the Fe/S ratio of 5:0.5, 5:1 and 5:5, while poor extraction(<46%) at the Fe/S ratio of 5:0 and 5:10.Furthermore, the bacterial community analysis based on species-specific gyrB numbers indicated that, absent sulfur or excessive sulfur would be not conducive to the synergistic growth for A. ferrooxidans and A. thiooxidans, and then not conducive to the uranium dissolution. Meanwhile, the sulfur-oxidizers could play an important role in the process of uranium synergistic bioleaching by mixed bacterial consortia. Additionally, the characteristics of mineral residue was detected by SEM-EDS. The results showed appropriate sulfur dosage would change the structure and improve the porosity of passivation substance. Lastly, the uranium dissolution kinetics and biochemical reaction mechanism was analyzed. It indicated that the biochemical reaction coupling iron and sulfur had a pleiotropic effect on the uranium dissolution from the ore particles, appropriate Fe/S ratio is the key factor for uranium bioleaching by chemoautotrophic acidophiles.展开更多
基金The authors thank the Yayasan Universiti Teknologi PETRONAS(YUTP FRG Grant No.015LC0-428)at Universiti Teknologi PETRO-NAS for supporting this study.
文摘Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.
基金the support of the National Science Foundation of China(12372120,12172075)the Liaoning Revitalization Talents Program(XLYC2007027)Fundamental Research Funds for the Central Universities(DUT21RC(3)067).
文摘Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy.
基金Funded by the National Basic Research Program of China (973 Program) (No. 2009CB623201)the National Natural Science Foundation of China (No.51072150)
文摘The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics of C-S-H samples were analyzed by XRD, IR and SEM. The experimental results showed that the d-spacing of (002), (110) and (020) decreased, the d-spacing of (200) increased, and the d-spacing of (310) varied randomly, the polymerization of silica tetrahedra of C-S-H decreased, and morphology of C-S-H samples varied from sheet shapes to long reticular fibers as C/S ratio increased.
文摘In gas turbines, thermal barrier coatings (TBCs) applied by air plasma spraying are widely used to lower the temperature of hot components. To analyze the characteristics of TBCs such as residual stress, bond strength, fracture toughness, and crack propagation ratio, the Young's modulus and Poisson's ratio are important parameters. For TBC is a brittle and thin film, it is desirable to evaluate those properties while the coatings are bonded to a substrate. An atmospheric plasma spray MCrAIY bond coat and Yttria stabilized zirconia (YSZ) top coat are deposited onto a nickel-base superalloy GH150 substrate. The Young's modulus and Poisson's ratio are measured by cantilever beam bending with NDI. The method will be developed to test the Young' s modulus and Poisson ratio of other multilayer systems.
基金supported by The National Key Research and Development Program Plane(No.2017YFC0601505)National Natural Science Foundation(No.41672325)Science&Technology Department of Sichuan Province Technology Project(No.2017GZ0393)
文摘The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.
基金Project supported by the National Basic Research Program (973) of China(No.G1999022211)the National Natural Science Foun-dation of China(No.59836210).
文摘The experimental test of co-incinerating Chinese raw municipal solid waste (MSW) and coal in a laboratory-scale tubular reactor was first reported in present study, and the emission of normal gas components and the effects of the S/Cl molar ratio or coal mixing percentages on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) emission were investigated and discussed. The results indicated that OCDD was the only PCDD homologues since others like TCDD-HpCDD was hardly detected, while as the categories of PCDF homologues were comparatively much more general. The amount of PCDD was much larger than that of PCDF in all operating conditions. Since ZPCDF/∑PCDD〈〈1, the dominant role of the precursor formation was proven in our experimental conductions. With increasing the coal addition to MSW (from 0 to 16%), PCDD and PCDF were reduced considerably. Coal and MSW may suppress the PCDD/F emissions efficiently (over 95%) during the MSW incineration process. The PCDD/F suppression results of the present study could be helpful guidance to the industrial application of Chinese MSW and auxiliary coal co-incineration processes. The PCDD/F stack emission data of two industrial incinerators using co-incineration technology in China seem to have a great positive reduction of PCDDs/Fs.
文摘The generalized mixture rule(GMR) is used to provide a unified framework for describing Young’s(E),shear(G) and bulk(K) moduli, Lame parameter(l), and P- and S-wave velocities(Vpand Vs) as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and l of each material are systematically different and display consistent correlations with the Poisson’s ratio of the nonporous material(v0). For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson’s ratio(n) remains constant is at v0=0.2, and J(G) > J(E) > J(K) > J(l) and J(G) < J(E) < J(K) < J(l) for materials with v0> 0.2 and v0< 0.2, respectively.J(Vs) > J(Vp) and J(Vs) < J(Vp) for the materials with v0> 0.2 and v0< 0.2, respectively. The effective n increases, decreases and remains unchanged with increasing porosity for the materials with v0< 0.2,v0> 0.2 and v0=0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the n fixed point decreases nonlinearly with decreasing pore aspect ratio(a: width/length). With increasing depth or pressure, cracks with smaller a values are progressively closed, making the n fixed point rise and finally reach to the point at v0=0.2.
基金sponsored by Special National Science and Technology Project on "Scientific research of fault zone of Wenchuan Earthquake"(the 15th Subject)the director fund of Institute of Geology of Chinese Academy of Geological Sciences
文摘Seismic tomography can provide both fine P-wave and S-wave velocity structures of the crust and upper mantle. In addition, with proper computation, Poisson's ratio images from the seismic velocities can be determined. However, it is unknown whether Poisson's ratio images have any advantages when compared with the P-wave and S-wave velocity images. For the purposes of this study, high- resolution seismic tomography under the eastern part of North China region was used to determine detailed 3-D crustal P- and S-wave seismic velocities structure, as well as Poisson's ratio images. Results of Poisson's ratio imaging show high Poisson's ratio (high-PR) anomalies located in the Hengshan-North Taihang-Zhangjiakou (H-NT-Z) region, demonstrating that Poisson's ratio imaging can provide new geophysical constraints for regional tectonic evolution. The H-NT-Z region shows a prominent and continuous high-PR anomaly in the upper crust. Based on Poisson's ratio images at different depths, we find that this high-PR anomaly is extending down to the middle crust with thickness up to about 26 kin. According to rock physical property measurements and other geological data, this crustal Poisson's ratio anomaly can be explained by Mesozoic partial melting of the upper mantle and basaltic magma underplating related to the lithospheric thinning of the North China craton.
文摘BACKGROUND In spite of developing medical technologies to discover the etiopathogenesis of diseases and developments in the treatment of coronary artery disease, acute coronary syndromes(ACS) continue to be the main cause of mortality and morbidity worldwide. New cardiac biomarkers and techniques are needed to help provide rapid diagnosis in order to evaluate risk in coronary artery patients.AIM To evaluate the effects of R to S ratio(RSR) in the electrocardiograph of patients with ACS, from the point of the arising complication after myocardial infarction(MI), to three-vessel disease(TVD) and mortality.METHODS The data of 1,296 patients with ACS, who presented to the emergency department of our hospital with chest pain between January 2014 and December2018 and were admitted to the cardiology clinic, were retrospectively included in this cross-sectional cohort study. Patients with an RSR value less than I were assigned to group Ⅰ, while those with an RSR value greater than Ⅰ were assigned to group Ⅱ.RESULTS In our study, 466(35.9%) of the 1,296 patients, 357(38.3%) in group 1 and 109(29.9%) in group 2, were female, with a mean age of 61.56 ± 9.42. ST-elevation MI 573(44.2%), unstable angina(UA) 502(38.7%) and non ST-elevation MI 220(17%)were more prevalent in group Ⅰ. Acute anterior MI 263(20.3) in group Ⅰ, and acute inferior MI 184(14.2) in group Ⅱ was higher. Ischemic heart failure was the most common complication. In group Ⅱ, the red cell distribution width(RDW) was 15.42 ± 1.82, the gensini score was 48.39 ± 36.44, the left ventricular ejection fraction was 41.17 ± 10.41, the TVD was 111(8.5), and the mortality rate was 72(5.6), which was significantly higher than group Ⅰ RDW; in MI with ST and nonST-elevation, in TVD, mortality and complications were high and low in UA. In single and multivariate regression analyses, the variables were associated with ACS risk.CONCLUSION RSR levels may be an auxiliary predictive value in ACS in terms of complications developing after MI, TVD, and mortality.
文摘The prognosis of hepatocellular carcinoma(HCC) depends on tumor extension as well as hepatic function.Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC;the ChildPugh classif ication system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease,using serum albumin level to achieve accurate assessment of the status of protein metabolism.However,insuff icient attention has been given to the status of amino acid(AA) metabolism in chronic liver disease and HCC.Fischer's ratio is the molar ratio of branched-chain AAs(BCAAs:leucine,valine,isoleucine) to aromatic AAs(phenylalanine,tyrosine) and is important for assessing liver metabolism,hepatic functional reserve and the severity of liver dysfunction.Although this ratio is diff icult to determine in clinical situations,BCAAs/tyrosine molar concentration ratio(BTR) has been proposed as a simpler substitute.BTR correlates with various liver function examinations,including markers of hepatic f ibrosis,hepatic blood flow and hepatocyte function,and can thus be considered as reflecting the degree of hepatic impairment.This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.
文摘The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the static corrections and improving the S/N ratio for pre-stack seismic data. Suppression and elimination of various other distortions has been implemented as well. Due to the fact that the S/N ratio is improved, the resolution of the seismic data is also improved.
基金funding support from the Beijing Municipal Natural Science Foundation,China(Z150001)supported by Beijing Anzhen Hospital.
文摘Inherent drawbacks associated with drug-eluting stents have prompted the development of bioresorbable cardiovascular stents.Additive manufacturing(3-dimentional(3D)printing)has been widely applied in medical devices.In this study,we develop a novel screw extrusion-based 3D printing system with a new designed mini-screw extruder to fabricate stents.A stent with a zero Poisson’s ratio(ZPR)structure is designed,and a preliminary monofilament test is conducted to investigate appropriate fabrication parameters.3D-printed stents with different geometric structures are fabricated and analyzed by observation of the surface morphology.An evaluation of the mechanical properties and a preliminary biological evaluation of 3D-printed stents with different parameters are carried out.In conclusion,the screw extrusion-based 3D printing system shows potential for customizable stent fabrication.
基金Supported by National Natural Science Foundation of China (10671182)Anhui Natural Science Foundation (090416225)+1 种基金Anhui Natural Science Foundation of Universities (KJ2010A037, KJ2010B026)Anhui Natural Science Foundation (10040606Q03)
文摘In this paper the insurer's solvency ratio model with or without jump diffusion process in the presence of financial distress cost is constructed, where an insurer's solvency ratio is characterized by a Markov-modulated dynamics. By Girsanov's theorem and the option pricing formula, the expected present value of shareholders' terminal payoff is provided.
基金supported by the National Natural Science Foundation of China(NSFC)(41941018)the Second Tibetan Plateau Scientific Expedition and Research Grant 2019QZKK0708。
文摘Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable.
基金supported by Military Pre-study Project of General Armament Department of China (Grant No. YG060101C)
文摘Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since the FCG process is affected by various factors,no universal model exists due to the complexity of the mechanisms.Most of the existing models are obtained by fitting the experimental data and could hardly describe the integrative effect of most existing factors simultaneously.In order to account for the integrative effect of specimen parameters,material property and loading conditions on FCG process,a new model named integrative influence factor model(IIF) is proposed based on the plasticity-induced crack closure theory.Accordingly to the predictions of crack opening ratio(γ) and effective stress intensity factor range ratio(U) with different material under various loading conditions,predictions of γ and U by the IIF model are completely identical to the theoretical results from the plane stress state to the plane strain state when Poisson's ratio equals 1/3.When Poisson's ratio equals 0.3,predictions of γ and U by the IIF model are larger than the predictions by the existing model,and more close to the theoretical results.In addition,it describes the influence of R ratios on γ and U effectively in the whole region from-1.0 to 1.0.Moreover,several sets of test data of FCG rates in 5 kinds of aluminum alloys with various specimen thicknesses under different loading conditions are used to validate the IIF model,most of the test data are situated on the predicted curves or between the two curves that represent the specimen with different thicknesses under the same stress ratio.Some of the test data slightly departure from the predictions by the IIF model due to the surface roughness and errors in measurement.Besides,based on the analysis of the physical rule of crack opening ratios,a relative thickness of specimen is defined to describe the influence of material property,specimen thickness and so forth on FCG characteristics conveniently.In conclusion,the relative thickness of specimen simplifies the expression of FCG characteristic and provides a general parameter to analyze the fatigue characteristics of different materials with various thicknesses under different loading conditions.The IIF model describes the integrative effect of existing influence factors explicitly and quantitatively,and provides a helpful tool for fatigue property estimation of practical component and experiment design.
基金the financial support by the grant from the Research Grant Council of the Hong Kong Special Administrative Region(HKSAR)China Project No.9041880(City U112813)the start-up grant of the College of Science and Engineering,City University of Hong Kong(Code:7200533-ACE)
文摘In this study, extender and bender element tests were conducted investigating the small-strain Poisson’s ratio of variable sands, with a focus on the effect of stress anisotropy in order to quantify the sensitivity of Poisson’s ratio to the applied deviatoric stress. Four different uniform sands were tested, including a biogenic sand, a crushed rock and two natural sands, covering a wide range of particle shapes. From these sands, eleven samples were prepared in the laboratory and were tested under variable stress paths,maintaining a constant mean effective pressure while increasing the deviatoric compressive load. Under the application of these given stress paths, the data analysis indicated that the sensitivity of Poisson’s ratio to the stress ratio was more pronounced for sands with irregularly shaped particles in comparison to sands with fairly rounded and spherical grains. For sands with very irregularly shaped particles, the increase of Poisson’s ratio from the isotropic to the anisotropic stress state reached 50%, while this increase for natural sands with fairly rounded particles was in the order of 20%.
基金Projects 07KJZ11 supported by the President Fund of Xuzhou Medical School07KJB310117 by the Education Department of Jiangsu Province
文摘Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.
基金Project(51804165) supported by the National Natural Science Foundation of ChinaProject(2018JJ3441) supported by the Natural Science Foundation of Hunan Province,China。
文摘The role of Fe/S ratios(ω, g/g) in the uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium was investigated. The results showed good uranium extraction with over 90% at the Fe/S ratio of 5:0.5, 5:1 and 5:5, while poor extraction(<46%) at the Fe/S ratio of 5:0 and 5:10.Furthermore, the bacterial community analysis based on species-specific gyrB numbers indicated that, absent sulfur or excessive sulfur would be not conducive to the synergistic growth for A. ferrooxidans and A. thiooxidans, and then not conducive to the uranium dissolution. Meanwhile, the sulfur-oxidizers could play an important role in the process of uranium synergistic bioleaching by mixed bacterial consortia. Additionally, the characteristics of mineral residue was detected by SEM-EDS. The results showed appropriate sulfur dosage would change the structure and improve the porosity of passivation substance. Lastly, the uranium dissolution kinetics and biochemical reaction mechanism was analyzed. It indicated that the biochemical reaction coupling iron and sulfur had a pleiotropic effect on the uranium dissolution from the ore particles, appropriate Fe/S ratio is the key factor for uranium bioleaching by chemoautotrophic acidophiles.