The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
On the basis of the exact solution of biharmonic problems of elasticity theory in a half-strip one possible reason is shown of those problems that arise when an approximate or numerical approaches leading the solution...On the basis of the exact solution of biharmonic problems of elasticity theory in a half-strip one possible reason is shown of those problems that arise when an approximate or numerical approaches leading the solution of boundary value problems to infinite systems of linear algebraic equations. Construction of exact solutions of some boundary value problems for differential equations in partial derivatives is not possible without their extensions to Riemann surfaces. Moreover, each of the boundary value problem corresponds to its Riemann surface. This fact is important to consider when developing an effective approximate and numerical methods of solving boundary value problems.展开更多
By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-...By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.展开更多
With the increased number of PMUs in the power grid, effective high speed, realtime methods to ascertain relevant data for situational awareness are needed. Several techniques have used data from PMUs in conjunction w...With the increased number of PMUs in the power grid, effective high speed, realtime methods to ascertain relevant data for situational awareness are needed. Several techniques have used data from PMUs in conjunction with state estimation to assess system stability and event detection. However, these techniques require system topology and a large computational time. This paper presents a novel approach that uses real-time PMU data streams without the need of system connectivity or additional state estimation. The new development is based on the approximation of the eigenvalues related to the decoupled discreet-time power flow Jacobian matrix using direct openPDC data in real-time. Results are compared with other methods, such as Prony’s method, which can be too slow to handle big data. The newly developed Discreet-Time Jacobian Eigenvalue Approximation (DDJEA) method not only proves its accuracy, but also shows its effectiveness with minimal computational time: an essential element when considering situational awareness.展开更多
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method ...We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method to update the sample density functions. We also prove the asymptotic convergence of this algorithm, and report some numerical results to illuminate its effectiveness.展开更多
In this paper, we demonstrate that the finite-dimensional approximations to the solutions of a linear bond-based peridynamic boundary value problem converge to the exact solution exponentially with the analyticity ass...In this paper, we demonstrate that the finite-dimensional approximations to the solutions of a linear bond-based peridynamic boundary value problem converge to the exact solution exponentially with the analyticity assumption of the forcing term, therefore greatly improve the convergence rate derived in literature.展开更多
A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discusse...A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discussed and constructed. An example was given to illustrate its application.展开更多
To solve the Fredholm integral equations of the second kind, a new notion of the least-squares orthogonal polyno- mials of function-valued Pade-type approximation is introduced. On the basis of the error formula, the ...To solve the Fredholm integral equations of the second kind, a new notion of the least-squares orthogonal polyno- mials of function-valued Pade-type approximation is introduced. On the basis of the error formula, the least-squares function: valued Pad&type approximation is constructed. Their existence and uniqueness are studied. A recursive computation formula of the least-squares function-valued Padetype approximation is given. In the end, an example is given to show that the method is effective and stable.展开更多
This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quick...This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data.展开更多
A peak norm is defined for Lp spaces of E-valued Bochner integrable functions, where E is a Banach space, and best approximations from a sun to elements of the space are characterized. Applications are given to some f...A peak norm is defined for Lp spaces of E-valued Bochner integrable functions, where E is a Banach space, and best approximations from a sun to elements of the space are characterized. Applications are given to some families of simultaneous best approximation problems.展开更多
A new vector-valued Pad′e-type approximation is defined by introducing a gener- alized vector-valued linear functional from a scalar polynomial space to a vector space. Some algebraic properties and error formulas ar...A new vector-valued Pad′e-type approximation is defined by introducing a gener- alized vector-valued linear functional from a scalar polynomial space to a vector space. Some algebraic properties and error formulas are presented. The expressions of this Pad′e-type ap- proximants are provided with the generating function form and the determinant form.展开更多
Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be a...Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.展开更多
The computational problems of two special determinants are investigated. Those determinants appear in the construction of the function-valued Pade-type approximation for computing Fredholm integral equation of the sec...The computational problems of two special determinants are investigated. Those determinants appear in the construction of the function-valued Pade-type approximation for computing Fredholm integral equation of the second kind. The main tool to be used in this paper is the well-known Schur complement theorem.展开更多
In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light...In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light deflection angle and compare it with previous works. These results are useful for precision astrometry missions like ASTROD, GALA, Darwin and SIM which aim at astrometry with micro-arcsecond and nano-aresecond accuracies, and need for the second post-Newtonian framework and ephemeris for observations to determine the stellar and spacecraft positions.展开更多
In this paper, it is discussed by using cone and upper and lower solutions mono- tone iterative theory of mixed monotone operator that the bounary value problem is more generalized style to system of equations in the ...In this paper, it is discussed by using cone and upper and lower solutions mono- tone iterative theory of mixed monotone operator that the bounary value problem is more generalized style to system of equations in the form of -u = f(t, u, v) -v = g(t, u, v) u(0) = u(1) = 0 v(0) = v(1) = 0 in abstract space. Moreover, it is obtained unique solutions for system of equations and error estimations between approximation iteration sequence and exact solution under more simpler conditions. Therefore, some new results which extend and improve the related known works in the literatures are obtained.展开更多
The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memo...The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.展开更多
This paper deals with the monotone iterative method for set -- valued operator equation in ordered normed space. Some results for the case of single valued operator are generalized here, as an application, a discontin...This paper deals with the monotone iterative method for set -- valued operator equation in ordered normed space. Some results for the case of single valued operator are generalized here, as an application, a discontinuous nonlinear differential equation problem is discussed.展开更多
This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layer...This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.展开更多
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
文摘On the basis of the exact solution of biharmonic problems of elasticity theory in a half-strip one possible reason is shown of those problems that arise when an approximate or numerical approaches leading the solution of boundary value problems to infinite systems of linear algebraic equations. Construction of exact solutions of some boundary value problems for differential equations in partial derivatives is not possible without their extensions to Riemann surfaces. Moreover, each of the boundary value problem corresponds to its Riemann surface. This fact is important to consider when developing an effective approximate and numerical methods of solving boundary value problems.
基金Supported by the National Natural Science Foundation of China(No:69872039)
文摘By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.
文摘With the increased number of PMUs in the power grid, effective high speed, realtime methods to ascertain relevant data for situational awareness are needed. Several techniques have used data from PMUs in conjunction with state estimation to assess system stability and event detection. However, these techniques require system topology and a large computational time. This paper presents a novel approach that uses real-time PMU data streams without the need of system connectivity or additional state estimation. The new development is based on the approximation of the eigenvalues related to the decoupled discreet-time power flow Jacobian matrix using direct openPDC data in real-time. Results are compared with other methods, such as Prony’s method, which can be too slow to handle big data. The newly developed Discreet-Time Jacobian Eigenvalue Approximation (DDJEA) method not only proves its accuracy, but also shows its effectiveness with minimal computational time: an essential element when considering situational awareness.
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
基金Project supported by the National Natural Science Foundation of China (No.10671117)Shanghai Leading Academic Discipline Project (No.J050101)the Youth Science Foundation of Hunan Education Department of China (No.06B037)
文摘We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method to update the sample density functions. We also prove the asymptotic convergence of this algorithm, and report some numerical results to illuminate its effectiveness.
文摘In this paper, we demonstrate that the finite-dimensional approximations to the solutions of a linear bond-based peridynamic boundary value problem converge to the exact solution exponentially with the analyticity assumption of the forcing term, therefore greatly improve the convergence rate derived in literature.
文摘A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discussed and constructed. An example was given to illustrate its application.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘To solve the Fredholm integral equations of the second kind, a new notion of the least-squares orthogonal polyno- mials of function-valued Pade-type approximation is introduced. On the basis of the error formula, the least-squares function: valued Pad&type approximation is constructed. Their existence and uniqueness are studied. A recursive computation formula of the least-squares function-valued Padetype approximation is given. In the end, an example is given to show that the method is effective and stable.
基金The work of first author was partially supported by Natural Science Foundation of China second author's was partially supported by a UGC Grant of Hong Kong: Project No. 604103
文摘In this paper, we will introduce some problems and results between Diophantine approximation and value distribution theory.
文摘This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data.
文摘A peak norm is defined for Lp spaces of E-valued Bochner integrable functions, where E is a Banach space, and best approximations from a sun to elements of the space are characterized. Applications are given to some families of simultaneous best approximation problems.
基金The work is supported by the National Natural Science Foundation of China (10271074).
文摘A new vector-valued Pad′e-type approximation is defined by introducing a gener- alized vector-valued linear functional from a scalar polynomial space to a vector space. Some algebraic properties and error formulas are presented. The expressions of this Pad′e-type ap- proximants are provided with the generating function form and the determinant form.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.
基金The work is supported by the National Natural Science Foundation of China (10271074)by the Special Funds for Major Specialities of Shanghai Education Committee.
文摘The computational problems of two special determinants are investigated. Those determinants appear in the construction of the function-valued Pade-type approximation for computing Fredholm integral equation of the second kind. The main tool to be used in this paper is the well-known Schur complement theorem.
基金Supported by the National Natural Science Foundation of China under Grant No. 10875171
文摘In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light deflection angle and compare it with previous works. These results are useful for precision astrometry missions like ASTROD, GALA, Darwin and SIM which aim at astrometry with micro-arcsecond and nano-aresecond accuracies, and need for the second post-Newtonian framework and ephemeris for observations to determine the stellar and spacecraft positions.
文摘In this paper, it is discussed by using cone and upper and lower solutions mono- tone iterative theory of mixed monotone operator that the bounary value problem is more generalized style to system of equations in the form of -u = f(t, u, v) -v = g(t, u, v) u(0) = u(1) = 0 v(0) = v(1) = 0 in abstract space. Moreover, it is obtained unique solutions for system of equations and error estimations between approximation iteration sequence and exact solution under more simpler conditions. Therefore, some new results which extend and improve the related known works in the literatures are obtained.
基金The research is supported by the National Natural Science Foundation of China under Grant nos.11701409 and 11571171the Natural Science Foundation of Jiangsu Province of China under Grant BK20170591the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant 17KJB110018.
文摘The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.
基金the National Natural Sciences Foundation of China
文摘This paper deals with the monotone iterative method for set -- valued operator equation in ordered normed space. Some results for the case of single valued operator are generalized here, as an application, a discontinuous nonlinear differential equation problem is discussed.
文摘This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.