Greenhouse technology is an efficient and viable option, especially for the sustainable crop production in the regions of adverse climatic conditions. High summer temperature is one of the worst effects on greenhouse ...Greenhouse technology is an efficient and viable option, especially for the sustainable crop production in the regions of adverse climatic conditions. High summer temperature is one of the worst effects on greenhouse crop production throughout the year. The main purpose of this paper is to present some technologies and studies for greenhouse cooling in summer. In the paper, some applicable and practical cooling technologies have been discussed. The choice of efficient cooling method depends on many aspects, such as local climate, agronomic condition, design and covering materials. To achieve desirable benefits, the combination of different cooling methods is necessarily used. Analysis of earlier studies revealed that a naturally ventilated greenhouse with larger ventilation areas (15% - 30%), provided at the ridge and side covered with insect-proof nets of 20 - 40 mesh size with covering material properties of NIR (near infrared radiation) reflection during the day and FIR (far infrared radiation) reflection during night was suitable for greenhouse production throughout year in some special regions. Evaporation cooling is the most effective cooling method for controlling the temperature and humidity inside a greenhouse. However, its suitability is restricted to the respective region and climate when the humidity level is high. The entry of unwanted radiation or light can be controlled by the use of shading. Researches show that shade net application with different perforated mesh size and their evaluation with respect to local climate and region are necessary to get cooling benefits in summer.展开更多
This research is intended to explore the capacity of Malaysia soil in becoming a more effective heat sink for the application of Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia. EAHE Cooling Technolo...This research is intended to explore the capacity of Malaysia soil in becoming a more effective heat sink for the application of Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia. EAHE Cooling Technology consists of buried pipes underground where the ambient air is channeled through from the pipe inlet and produces cooler air at its outlet. Within the buried pipes, heat exchange process occurs between the air and the soil that surrounding the pipe. This building cooling technology has been applied in many countries, mostly in temperate or hot and arid climate where the diurnal temperature is large. However, minimal resources were found on the study of EAHE application to buildings in Malaysia, hence there is room to develop. A parametric study on EAHE cooling application in Malaysia was done through field experiment and concluded that among many parameters affecting the technology performance, the soil temperature which surrounded the pipe was the most influential factor. The study recommended to further reduce the soil temperature to achieve a cooler outlet temperature. In response to that, this research conducted a parametric study of soil temperature under three different soil surface conditions: bare, shaded with timber pallettes and insulated with used tyres at 1.0 m and 1.5 m underground. The data was logged for a month and the result has shown significant reduction in the soil temperature underground below the shaded and insulated soil surface as compared to below bare soil surface condition. The insulated soil surface produced the best result where the soil temperature was reduced up to 26.9°C. The main contribution of this paper is to highlight that the soil surface treatment can be used to reduce solar heat gain within the soil underground and thus improving the performance of EAHE Cooling Technology particularly for the application in Malaysia tropical climate.展开更多
A new cooling technique based on thermal driving in high centrifugal field (TDHCF) is developed for gas turbine rotational components, such as turbine blades. The key point of TDHCF is to enhance heat transfer by th...A new cooling technique based on thermal driving in high centrifugal field (TDHCF) is developed for gas turbine rotational components, such as turbine blades. The key point of TDHCF is to enhance heat transfer by the fluid thermal driving in closed loop small channels placed in the high centrifugal field. Heat transfer characteristics of the new cooling technique are analyzed. In experiments, two different fluids (liquid water and Freon R12) are used as thermal driving media (fluid inside the loop channel). And the channel width d is 1 mm and the height h is 30 mm. The temperature is measured by thermocouples and an average heat transfer coefficient KH is defined to indicate heat transfer capacity of TDHCF. Experimental results show that KH is enhanced when heat flux and the rotating speed increase. And thermal properties of thermal driving media are also influenced by KH. Larger KH can be achieved by using Freon R12 as thermal driving medium compared with using liquid water. It can increase to 2 300 W/(m^2 · K) and it is much higher than that of the normal air cooling method (usually at the level of 600-1200 W/(m^2·K)). All fundamental studies of TDHCF show that there actually exists thermal driving in the closed loop small channel in the centrifugal field to improve heat transfer characteristics.展开更多
文摘Greenhouse technology is an efficient and viable option, especially for the sustainable crop production in the regions of adverse climatic conditions. High summer temperature is one of the worst effects on greenhouse crop production throughout the year. The main purpose of this paper is to present some technologies and studies for greenhouse cooling in summer. In the paper, some applicable and practical cooling technologies have been discussed. The choice of efficient cooling method depends on many aspects, such as local climate, agronomic condition, design and covering materials. To achieve desirable benefits, the combination of different cooling methods is necessarily used. Analysis of earlier studies revealed that a naturally ventilated greenhouse with larger ventilation areas (15% - 30%), provided at the ridge and side covered with insect-proof nets of 20 - 40 mesh size with covering material properties of NIR (near infrared radiation) reflection during the day and FIR (far infrared radiation) reflection during night was suitable for greenhouse production throughout year in some special regions. Evaporation cooling is the most effective cooling method for controlling the temperature and humidity inside a greenhouse. However, its suitability is restricted to the respective region and climate when the humidity level is high. The entry of unwanted radiation or light can be controlled by the use of shading. Researches show that shade net application with different perforated mesh size and their evaluation with respect to local climate and region are necessary to get cooling benefits in summer.
文摘This research is intended to explore the capacity of Malaysia soil in becoming a more effective heat sink for the application of Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia. EAHE Cooling Technology consists of buried pipes underground where the ambient air is channeled through from the pipe inlet and produces cooler air at its outlet. Within the buried pipes, heat exchange process occurs between the air and the soil that surrounding the pipe. This building cooling technology has been applied in many countries, mostly in temperate or hot and arid climate where the diurnal temperature is large. However, minimal resources were found on the study of EAHE application to buildings in Malaysia, hence there is room to develop. A parametric study on EAHE cooling application in Malaysia was done through field experiment and concluded that among many parameters affecting the technology performance, the soil temperature which surrounded the pipe was the most influential factor. The study recommended to further reduce the soil temperature to achieve a cooler outlet temperature. In response to that, this research conducted a parametric study of soil temperature under three different soil surface conditions: bare, shaded with timber pallettes and insulated with used tyres at 1.0 m and 1.5 m underground. The data was logged for a month and the result has shown significant reduction in the soil temperature underground below the shaded and insulated soil surface as compared to below bare soil surface condition. The insulated soil surface produced the best result where the soil temperature was reduced up to 26.9°C. The main contribution of this paper is to highlight that the soil surface treatment can be used to reduce solar heat gain within the soil underground and thus improving the performance of EAHE Cooling Technology particularly for the application in Malaysia tropical climate.
文摘A new cooling technique based on thermal driving in high centrifugal field (TDHCF) is developed for gas turbine rotational components, such as turbine blades. The key point of TDHCF is to enhance heat transfer by the fluid thermal driving in closed loop small channels placed in the high centrifugal field. Heat transfer characteristics of the new cooling technique are analyzed. In experiments, two different fluids (liquid water and Freon R12) are used as thermal driving media (fluid inside the loop channel). And the channel width d is 1 mm and the height h is 30 mm. The temperature is measured by thermocouples and an average heat transfer coefficient KH is defined to indicate heat transfer capacity of TDHCF. Experimental results show that KH is enhanced when heat flux and the rotating speed increase. And thermal properties of thermal driving media are also influenced by KH. Larger KH can be achieved by using Freon R12 as thermal driving medium compared with using liquid water. It can increase to 2 300 W/(m^2 · K) and it is much higher than that of the normal air cooling method (usually at the level of 600-1200 W/(m^2·K)). All fundamental studies of TDHCF show that there actually exists thermal driving in the closed loop small channel in the centrifugal field to improve heat transfer characteristics.