期刊文献+
共找到90,772篇文章
< 1 2 250 >
每页显示 20 50 100
Behavior of large post-liquefaction deformation in saturated Nanjing fine sand 被引量:4
1
作者 Pan Hua Chen Guoxing +1 位作者 Liu Hanlong Wang Binghui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期187-193,共7页
Laboratory tests on the large post-liquefaction deformation of saturated Nanjing fine sand were performed by using a hollow cylinder apparatus. The stress-strain responses and the characteristics of excess pore water ... Laboratory tests on the large post-liquefaction deformation of saturated Nanjing fine sand were performed by using a hollow cylinder apparatus. The stress-strain responses and the characteristics of excess pore water pressure after liquefaction were studied. It was found that the relationship between deviatoric stress and axial strain presented a sigmoid curve, and there was a good linearity relationship between normalized pore water pressure and deviatoric stress. On this basis, a constitutive model of stress-strain responses and a dissipation model of excess pore water pressure were established. It was found that the results predicted by the two models were in good agreement with the experimental data. The influence of relative densities and confining pressure on the characteristics of liquefied soil were studied, The results showed the relative densities and initial effective confining pressure all had an important influence on the stress-strain responses of liquefied saturated Nanjing fine sand. However, the dissipation model of excess pore water pressure after liquefaction was only affected by the confining pressure. 展开更多
关键词 saturated Nanjing fine sand large post-liquefaction deformation constitutive model dissipation model of excess pore water pressure
下载PDF
Behaviour of large post-liquefaction deformation in saturated sand-gravel composites 被引量:3
2
作者 潘华 陈国兴 +1 位作者 孙田 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2012年第2期547-552,共6页
The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by t... The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data. 展开更多
关键词 saturated sand-gravel composites post-liquefaction deformation stress-strain relation dissipation model: pore water pressure
下载PDF
Modelling spiky acceleration response of dilative sand deposits during earthquakes with emphasis on large post-liquefaction deformation 被引量:2
3
作者 Wang Gang Wei Xing John Zhao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期125-138,共14页
The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyz... The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyze the mechanism of such spiky acceleration responses. An idealized single-degree-of-freedom(SDF) system was constructed, in which the force-displacement relation of the spring follows the stress-strain behavior of saturated sand during undrained shearing. The SDF system demonstrated that the spikes are directly related to the strain-hardening behavior of sand during post-liquefaction cyclic shearing. Furthermore, there exists a threshold shear strain length, which is in accordance with the limited amplitude of the fluid-like shear strain generated at instantaneous zero effective stress state during the post-liquefaction stage. The spiky acceleration can only occur when the cyclic shear strain exceeds the threshold shear strain length. It is also revealed that the time intervals between the acceleration spikes increase gradually along with the continuation of shaking because the threshold shear strain length increases gradually and then more time is needed to generate larger shear strain to cause strain hardening. Records at the Kushiro Port site and Port Island site during past earthquakes are simulated through the fully coupled method to validate the presented mechanism. 展开更多
关键词 spiky acceleration cyclic mobility post-liquefaction seismic response sand
下载PDF
Large post-liquefaction deformation of sand:Mechanisms and modeling considering water absorption in shearing and seismic wave conditions
4
作者 Jian-Min Zhang Rui Wang 《Underground Space》 SCIE EI CSCD 2024年第5期3-64,共62页
Large deformation of sand due to soil liquefaction is a major cause for seismic damage.In this study,the mechanisms and modeling of large post-liquefaction deformation of sand considering the significant influence of ... Large deformation of sand due to soil liquefaction is a major cause for seismic damage.In this study,the mechanisms and modeling of large post-liquefaction deformation of sand considering the significant influence of water absorption in shearing and seismic wave conditions.Assessment of case histories from past earthquakes and review of existing studies highlight the importance of the two factors.Based on the micro and macro scale mechanisms for post-liquefaction shear deformation,the mechanism for water absorption in shearing after initial liquefaction is revealed.This is aided by novel designed constant water-absorption-rate shear tests.Water absorption in shearing can be classified into three types,including partial water absorption,complete water absorption,and compulsory water absorption.Under the influence of water absorption in shearing,even a strongly dilative sand under naturally drained conditions could experience instability and large shear deformation.The mechanism for amplification of post-liquefaction deformation under surface wave load is also explained via element tests and theoretical analysis.This shows that surface wave–shear wave coupling can induce asymmetrical force and resistance in sand,resulting in asymmetrical accumulation of deformation,which is amplified by liquefaction.A constitutive model,referred to as CycLiq,is formulated to capture the large deformation of sand considering water absorption in shearing and seismic wave conditions,along with its numerical implementation algorithm.The model is comprehensively calibrated based on various types of element tests and validated against centrifuge shaking table tests in the liquefaction experiments and analysis projects(LEAP).The model,along with various numerical analysis methods,is adopted in the successful simulation of water absorption in shearing and Rayleigh wave-shear wave coupling induced large liquefaction deformation.Furthermore,the model is applied to high-performance simulation for large-scale soil-structure interaction in liquefiable ground,including underground structures,dams,quay walls,and offshore wind turbines. 展开更多
关键词 LIQUEFACTION SAND Large deformation Water absorption in shearing Surface wave Rayleigh wave-shear wave coupling
原文传递
Deformation monitoring of long-span railway bridges based on SBAS-InSAR technology 被引量:1
5
作者 Lv Zhou Xinyi Li +4 位作者 Yuanjin Pan Jun Ma Cheng Wang Anping Shi Yukai Chen 《Geodesy and Geodynamics》 EI CSCD 2024年第2期122-132,共11页
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ... The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges. 展开更多
关键词 SBAS-InSAR Long-span railway bridge deformation monitoring Bridge structure Time series deformation
下载PDF
Violent collisions can reveal hexadecapole deformation of nuclei 被引量:1
6
作者 Björn Schenke 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期1-3,共3页
A new observable in heavy ion collision experiments was identified to be sensitive to the hexadecapole deformation of the colliding nuclei.Such deformation is difficult to measure in traditional nuclear electric trans... A new observable in heavy ion collision experiments was identified to be sensitive to the hexadecapole deformation of the colliding nuclei.Such deformation is difficult to measure in traditional nuclear electric transition measurements,as it is often overwhelmed by the nuclear quadrupole deformation.This opens the door to gain new insight into nuclear structure with experiments that were designed to study hot and dense nuclear matter. 展开更多
关键词 deformation COLLISION INSIGHT
下载PDF
Application of GNSS-PPP on Dynamic Deformation Monitoring of Offshore Platforms 被引量:1
7
作者 YU Li-na XIONG Kuan +3 位作者 GAO Xi-feng LI Zhi FAN Li-long ZHANG Kai 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期352-361,共10页
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b... The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms. 展开更多
关键词 GNSS-PPP offshore platform dynamic deformation monitoring improved CEEMDAN de-noising
下载PDF
Spatiotemporal deformation characteristics of Outang landslide and identification of triggering factors using data mining 被引量:1
8
作者 Beibei Yang Zhongqiang Liu +1 位作者 Suzanne Lacasse Xin Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4088-4104,共17页
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli... Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas. 展开更多
关键词 LANDSLIDE deformation characteristics Triggering factor Data mining Three gorges reservoir
下载PDF
Origin of nucleation and growth of extension twins in grains unsuitably oriented for twinning during deformation of Mg-1%Al 被引量:1
9
作者 Biaobiao Yang Javier LLorca 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1186-1203,共18页
A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction... A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction.The deformation mechanisms responsible for this behaviour were investigated through in-situ electron back-scattered diffraction,grain reference orientation deviation,and slip trace-modified lattice rotation.It was found that anomalous extension twins nucleated mainly at the onset of plastic deformation at or near grain boundary triple junctions.They were associated with the severe strain incompatibility between neighbour grains as a result from the differentbasal slip-induced lattice rotations.Moreover,the anomalous twins were able to grow with the applied strain due to the continuous activation ofbasal slip in different neighbour grains,which enhanced the strain incompatibility.These results reveal the complexity of the deformation mechanisms in Mg alloys at the local level when deformed along hard orientations. 展开更多
关键词 Magnesium Extension twinning In-situ electron back-scattered diffraction basal slip deformation mechanisms.
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
10
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing 被引量:1
11
作者 Luqiang Ding Chengzhi Xiao Feilong Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期711-725,共15页
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general... To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed. 展开更多
关键词 GEOSYNTHETICS Creep behavior Geosynthetics-reinforced soil(GRS)walls Lateral deformation Analytical model
下载PDF
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review 被引量:1
12
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
Coseismic deformation and fault slip distribution of the 2023 M_(W)7.8 and M_(W)7.6 earthquakes in Türkiye 被引量:1
13
作者 Weikang Li Lijiang Zhao +4 位作者 Kai Tan Xiaofei Lu Caihong Zhang Chengtao Li Shuaishuai Han 《Earthquake Science》 2024年第3期263-276,共14页
On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 tha... On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk. 展开更多
关键词 2023 Türkiye earthquake GNSS observation coseismic deformation field slip distribution
下载PDF
Liquefaction and post-liquefaction behaviors of sands affected by immersion-induced degradation of crushed mudstone
14
作者 Tadao Enomoto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1799-1812,共14页
A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing b... A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M_(c) >20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M_(c) >20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior. 展开更多
关键词 LIQUEFACTION post-liquefaction behavior Triaxial test Sands containing crushed mudstone
下载PDF
Deformation,structure and potential hazard of a landslide based on InSAR in Banbar county,Xizang(Tibet) 被引量:1
15
作者 Guan-hua Zhao Heng-xing Lan +4 位作者 Hui-yong Yin Lang-ping Li Alexander Strom Wei-feng Sun Chao-yang Tian 《China Geology》 CAS CSCD 2024年第2期203-221,共19页
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P... The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability. 展开更多
关键词 LANDSLIDE INSAR Human activity deformation STRUCTURE LSTM model Engineering construction Thickness Neural network Machine learning Prediction and prevention Tibetan Plateau Geological hazards survey engineering
下载PDF
Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel
16
作者 Haibo Feng Shaohua Li +7 位作者 Kexiao Wang Junheng Gao Shuize Wang Haitao Zhao Zhenyu Han Yong Deng Yuhe Huang Xinping Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期833-841,共9页
Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au... Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads. 展开更多
关键词 eutectoid pearlite rail steel prior austenite grain size dynamic recrystallization single-pass hot deformation three-pass hot deformation
下载PDF
Study on the vertical deformations induced by terrestrial water storage changes in Huang-Huai-Hai river basin
17
作者 Liansheng Deng Yugang Xiao +2 位作者 Qusen Chen Feifei Liao Zhao Li 《Geodesy and Geodynamics》 EI CSCD 2024年第4期352-365,共14页
Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spati... Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spatio-temporal Tws variations and addresses the relationship between deformation variations observed in the Huang-Huai-Hai River Basin(HHHRB)and local hydrological features.Results indicate that the vertical velocities at the GNSS stations induced by TWS changes are relatively small,and the impacts of the terrestrial water storage changes are mainly reflected in the changes of seasonal characteristics.Although there is a downward TWS trend from 2011 to 2022 in most HHHRB areas,velocities from the vertical displacements of both Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow-On(GFO)and the GNSS reflect that the HHHRB is undergoing an uplift process,while the magnitude of the GRACE/GFO derived velocities is much smaller than that of the GNSS solutions.Common hydrological deformations estimated from GRACE/GFO and GNSS measurements reveal that the TWS-derived displacements can explain 54.5%of the GNSS seasonal variations,with the phases of terrestrial water storage advancing by about one month relative to GNss common signal phases.Moreover,the decrease of the groundwater storage in the HHHRB has been accelerating since 2008.After reaching its lowest level around mid-2020,it began to rise rapidly,which might be closely related to the implementation of the South-North Water Transfer Central Project. 展开更多
关键词 Terrestrial waterstorage GRACE GNSS Vertical deformations Huang-Huai-Hairiverbasin
下载PDF
Room and cryogenic deformation behavior of AZ61 and AZ61-xCaO(x=0.5,1 wt.%)alloy
18
作者 Umer Masood Chaudry Hafiz Muhammad Rehan Tariq +2 位作者 Nooruddin Ansari Soo Yeol Lee Tea-Sung Jun 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1996-2009,共14页
This study investigates the influence of CaO(0.5,1(wt.%))alloying on the microstructural evolution,texture development and deformation behavior of AZ61 magnesium alloy.The uniaxial tension tests at room(RT)and cryogen... This study investigates the influence of CaO(0.5,1(wt.%))alloying on the microstructural evolution,texture development and deformation behavior of AZ61 magnesium alloy.The uniaxial tension tests at room(RT)and cryogenic(CT,-150℃)temperature were performed to investigate the twinability and dislocation behavior and its consequent effect on flow stress,ductility and strain hardening rate.The results showed that the AZ61-1CaO exhibited superior strength/ductility synergy at RT with a yield strength(YS)of 223 MPa and a ductility of 23% as compared to AZ61(178 MPa,18.5%)and AZ61-0.5CaO(198 MPa,21%).Similar trend was witnessed for all the samples during CT deformation,where increase in the YS and decrease in ductility were observed.The Mtex tools based in-grain misorientation axis(IGMA)analysis of RT deformed samples revealed the higher activities of prismatic slip in AZ61-CaO,which led to superior ductility.Moreover,subsequent EBSD analysis of CT deformed samples showed the increased fraction of fine{10-12}tension twins and nucleation of multiple{10-12}twin variants caused by higher local stress concentration at the grain boundaries,which imposed the strengthening by twin-twin interaction.Lastly,the detailed investigations on strengthening contributors showed that the dislocation strengthening has the highest contribution towards strength in all samples. 展开更多
关键词 Magnesium TWINNING Twinning variant EBSD Cryogenic deformation
下载PDF
Mechanical Behavior and Microstructure Evolution during Tensile Deformation of Twinning Induced Plasticity Steel Processed by Warm Forgings
19
作者 王文 ZHAO Modi +2 位作者 WANG Xingfu 汪聃 韩福生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期417-424,共8页
The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improve... The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling,with a high tensile strength(R_(m))of 793 MPa,a yield strength(R_(P))of 682 MPa,an extremely large R_(P)/R_(m)ratio as high as 0.86 as well as an excellent elongation rate of 46.8%.The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine,equiaxed grains.Complicated micro-defect configurations were also observed within the steel,including dense dislocation networks and a few coarse deformation twins.As the plastic deformation proceeds,the densities of dislocations and deformation twins significantly increase.Moreover,a great number of slip lines could be observed in the elongated grains.These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample,wherein the fine and equiaxed grains propagated dislocations more rapidly,together with initial defect configurations,are responsible for enhanced strength properties.Meanwhile,larger,elongated grains with more prevalently activated deformation twins result in high plasticity. 展开更多
关键词 TWIP steel TWINNING mechanical property deformation mechanism MICROSTRUCTURE
下载PDF
Unraveling engineering disturbance effects on deformation in red-bed mudstone railway cuttings:incorporating crack-facilitated moisture diffusion
20
作者 HUANG Kang DAI Zhangjun +3 位作者 YAN Chengzeng YAO Junkai CHI Zecheng CHEN Shanxiong 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1663-1682,共20页
Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses upli... Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways. 展开更多
关键词 Red-bed mudstone Railway cutting FDEM Moisture diffusion deformation CRACK
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部