期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
后验概率图与补白模型二次融合的关键词识别 被引量:2
1
作者 陈太波 张翠芳 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第6期1170-1176,共7页
使用全连接神经网络结合Softmax分类器对汉语的408个音节建立音节分类器,利用等长处理后的特征向量训练Softmax分类器,将Softmax分类器输出概率作为后验概率图,与隐马尔科夫补白模型(HMM/Filler)进行第一次融合,得到子后验概率图隐马尔... 使用全连接神经网络结合Softmax分类器对汉语的408个音节建立音节分类器,利用等长处理后的特征向量训练Softmax分类器,将Softmax分类器输出概率作为后验概率图,与隐马尔科夫补白模型(HMM/Filler)进行第一次融合,得到子后验概率图隐马尔科夫模型(Posteriorgram-HMM).针对关键词训练样本较少的问题,将标注样本进行强制切分,得到HMM每个状态上的训练数据.将隐马尔科夫最大后验概率基线模型(HMM-MAP)与Posteriorgram-HMM进行第二次融合,提出最大后验概率图隐马尔科夫模型(Posteriorgram-HMM-MAP).在数据集上训练模型后,使用测试数据对其进行测试.结果表明:Posteriorgram-HMM-MAP的综合识别率相比PosteriorgramHMM提升了3.55%,相比HMM/Filler提升了10.29%. 展开更多
关键词 识别 隐马尔可夫模型(HMM) 补白模型 Softmax分类器 后验概率图 最大后验概率(MAP)
下载PDF
基于分段动态时间规整和后验特征的中文语音模式发现 被引量:2
2
作者 杨鹏 谢磊 陈虹洁 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期903-907,共5页
语音模式发现是从语音流中检测出重复出现的音节、词或短语等语音单元的任务。该文基于分段动态时间规整(segmental dynamic time warping,SDTW)算法,尝试直接在中文语料上进行语音模式发现。Mel频率倒谱系数(Mel frequency cepstral co... 语音模式发现是从语音流中检测出重复出现的音节、词或短语等语音单元的任务。该文基于分段动态时间规整(segmental dynamic time warping,SDTW)算法,尝试直接在中文语料上进行语音模式发现。Mel频率倒谱系数(Mel frequency cepstral coefficient,MFCC)特征在衡量两个语音片段声学相似度上不够鲁棒,特别是针对多说话人语料,语音模式发现的效果大打折扣。该文尝试了基于音素后验概率(posteriorgram)的特征表示方法。实验表明:在多说话人和单说话人的语料上,音素后验特征均可以得到比MFCC更好的效果。该文尝试了用词边界确定分段进行语音模式发现,这种设置可以看作基于SDTW进行模式发现的效果上限。实验表明:在预知词边界的情况下,效率和正确率都得到了明显提升。 展开更多
关键词 语音模式发现 后验特征 动态时间规整 分段动态时间规整
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部