Being divided into three groups-strong, moderate and weak-according to the different kinetic parameters (Fmax, km, Cmin) of potassium uptake by crops, 21 cultivars of rice have been studied to find out the relationshi...Being divided into three groups-strong, moderate and weak-according to the different kinetic parameters (Fmax, km, Cmin) of potassium uptake by crops, 21 cultivars of rice have been studied to find out the relationships between their potassium nutrition and the oxidation-reduction status in the rhizosphere soils.Results show that, with no application of K fertilizer, there were higher contents of active reducing substances and ferrous iron in rhizosphere soils planted with cultivars, such as Zhongguo 91, week in absorbing potassium than in soils cropped with cultivars, Shanyou 64, stronger in absorbing potassium. As a result of K application, however, these toxic substances were decreased appreciably in the soil, particularly in the root zone where weakly K-absorbing cultivars were growing, and the parameter of soil redox (pH +pE) was increased, the most striking example of this being found in the rhizosphere soil where the more strongly K-absorbing cultivars were growing. On and close to the root surface in soils where rice plants were supplied with potassium fertilizer, rather more iron oxide had been accumulated compared with rice receiving no potash, and even greater amounts of red iron oxide precipitated on the rice root in neutral paddy soils. As shown by the concentration distribution of active reducing substances and ferrous iron in a microzone of the profile, the redox range of rice roots supplied with potassium may extend as far as several centimeters from the root surface. It can thus be seen that potassium nutrition exerts its effect first on the morphological properties of rice roots and their exudation of oxygen, then on the content of soluble oxygen and the count and species of oxygen-consuming microbes in the rhizosphere soil, and finally on the redox status of the soil.展开更多
Potassium is one of the major macro-nutrients essential for a number of cellular processes in plants. Low potassium level in the soil represents a limiting factor for crop production. Recent studies have identified po...Potassium is one of the major macro-nutrients essential for a number of cellular processes in plants. Low potassium level in the soil represents a limiting factor for crop production. Recent studies have identified potassium transporters that are involved in potassium acquisition, and some of them are critical for potassium nutrition under low potassium conditions. However, little is understood on the molecular components involved in low potassium signaling and responses. We report here the identification ofa calcineurin B-like protein-interacting protein kinase (CIPK9) as a critical regulator of low potassium response in ,Arabidopsis. The CIPK9 gene was responsive to abiotic stress conditions, and its transcript was inducible in both roots and shoots by potassium deprivation. Disruption of CIPK9 function rendered the mutant plants hypersensitive to low potassium media. Further analysis indicated that K^+ uptake and content were not affected in the mutant plants, implying CIPK9 in the regulation of potassium utilization or sensing processes.展开更多
A pot experiment was conducted to study the effect of nitrogen fertilizer on nitrogen and potassium uptake by four rice cultivars. Results showed that the quadatic parabola relationship between biomass of rice and nit...A pot experiment was conducted to study the effect of nitrogen fertilizer on nitrogen and potassium uptake by four rice cultivars. Results showed that the quadatic parabola relationship between biomass of rice and nitrogen levels was observed, with the maximum biomass at the nitrogen level of 150 mg kg-1.The rates of nitrogen and potassium uptake by the four rice cultivars depended on growth stage and rice cultivar with the maximum rate of N in Shanyou-63 and maximum rate of K in Kaiyou-5 (hybrid rice),respedively. The kinetics of nitrogen and potasssium uptake by rice plant could be quantitstively described by the following equations: y = a + blogt, y = ab + t1/2 and y = ae-bt. The b value in the equations was correlated significantly to the rates of nitrogen and potassium uptake (NR and KR, r=0.901**~0.990**),suggesting that the b value could be used to distinguish the index of nitrogen and potassium uptake capacity of rice. The maximum values of nitrogen uptake by plant (b value) and apparent recovery of fertilizer nitrogen were observed in Shanyou-63, and the minimum value in Eryou-6078. However, the capacity of potassium uptake (b value) by Kaiyou-5 ranked first and that by Shanyou-63 second. There was a significant linear relationship between nitrogen level and nitrogen uptake by rice, but a quadratic parabola relationship was found between nitrogen level and patassium uptake by rice. The application of nitrogen fertilizer decreased the ratios of potassium to nitrogen uptake by rice plant. The greatest reduction in the ratio was observed at high nitrogen level, and the least reduction was found in Kaiyou-5 and Shanyou-63 due to their greater ability to absorb potassium.展开更多
The paper reports the study on validity, absorbing and using in potassium of wine-grapes grown on aeolian sandy soil in Ningxia. The result shows that the content of slow release potassium and available potassium is l...The paper reports the study on validity, absorbing and using in potassium of wine-grapes grown on aeolian sandy soil in Ningxia. The result shows that the content of slow release potassium and available potassium is low. The amount of available potassium and fixed potassium increases with raising amount of applied potash. Slow release potassium can be quickly replenished when available potassium is depleted, but slow release potassium is exhausted too, and the buffering capacity of supplying potassium is low. The content of potassium in grains and plants increases with the increasing amount of applied K in different treatments. The sequence of potassium recovery rate in different soil is as follows: sand-loam>fine-sand>coarse-sand. The capacity of supplying potassium in high-fertility soil is better than that in low-fertility soil, and rate of potassium recovery is high. Potassium nutrient affects growth and quality of wine-grapes.展开更多
文摘Being divided into three groups-strong, moderate and weak-according to the different kinetic parameters (Fmax, km, Cmin) of potassium uptake by crops, 21 cultivars of rice have been studied to find out the relationships between their potassium nutrition and the oxidation-reduction status in the rhizosphere soils.Results show that, with no application of K fertilizer, there were higher contents of active reducing substances and ferrous iron in rhizosphere soils planted with cultivars, such as Zhongguo 91, week in absorbing potassium than in soils cropped with cultivars, Shanyou 64, stronger in absorbing potassium. As a result of K application, however, these toxic substances were decreased appreciably in the soil, particularly in the root zone where weakly K-absorbing cultivars were growing, and the parameter of soil redox (pH +pE) was increased, the most striking example of this being found in the rhizosphere soil where the more strongly K-absorbing cultivars were growing. On and close to the root surface in soils where rice plants were supplied with potassium fertilizer, rather more iron oxide had been accumulated compared with rice receiving no potash, and even greater amounts of red iron oxide precipitated on the rice root in neutral paddy soils. As shown by the concentration distribution of active reducing substances and ferrous iron in a microzone of the profile, the redox range of rice roots supplied with potassium may extend as far as several centimeters from the root surface. It can thus be seen that potassium nutrition exerts its effect first on the morphological properties of rice roots and their exudation of oxygen, then on the content of soluble oxygen and the count and species of oxygen-consuming microbes in the rhizosphere soil, and finally on the redox status of the soil.
基金a grant from the National Science Foundation (USA) (to SL).
文摘Potassium is one of the major macro-nutrients essential for a number of cellular processes in plants. Low potassium level in the soil represents a limiting factor for crop production. Recent studies have identified potassium transporters that are involved in potassium acquisition, and some of them are critical for potassium nutrition under low potassium conditions. However, little is understood on the molecular components involved in low potassium signaling and responses. We report here the identification ofa calcineurin B-like protein-interacting protein kinase (CIPK9) as a critical regulator of low potassium response in ,Arabidopsis. The CIPK9 gene was responsive to abiotic stress conditions, and its transcript was inducible in both roots and shoots by potassium deprivation. Disruption of CIPK9 function rendered the mutant plants hypersensitive to low potassium media. Further analysis indicated that K^+ uptake and content were not affected in the mutant plants, implying CIPK9 in the regulation of potassium utilization or sensing processes.
文摘A pot experiment was conducted to study the effect of nitrogen fertilizer on nitrogen and potassium uptake by four rice cultivars. Results showed that the quadatic parabola relationship between biomass of rice and nitrogen levels was observed, with the maximum biomass at the nitrogen level of 150 mg kg-1.The rates of nitrogen and potassium uptake by the four rice cultivars depended on growth stage and rice cultivar with the maximum rate of N in Shanyou-63 and maximum rate of K in Kaiyou-5 (hybrid rice),respedively. The kinetics of nitrogen and potasssium uptake by rice plant could be quantitstively described by the following equations: y = a + blogt, y = ab + t1/2 and y = ae-bt. The b value in the equations was correlated significantly to the rates of nitrogen and potassium uptake (NR and KR, r=0.901**~0.990**),suggesting that the b value could be used to distinguish the index of nitrogen and potassium uptake capacity of rice. The maximum values of nitrogen uptake by plant (b value) and apparent recovery of fertilizer nitrogen were observed in Shanyou-63, and the minimum value in Eryou-6078. However, the capacity of potassium uptake (b value) by Kaiyou-5 ranked first and that by Shanyou-63 second. There was a significant linear relationship between nitrogen level and nitrogen uptake by rice, but a quadratic parabola relationship was found between nitrogen level and patassium uptake by rice. The application of nitrogen fertilizer decreased the ratios of potassium to nitrogen uptake by rice plant. The greatest reduction in the ratio was observed at high nitrogen level, and the least reduction was found in Kaiyou-5 and Shanyou-63 due to their greater ability to absorb potassium.
文摘The paper reports the study on validity, absorbing and using in potassium of wine-grapes grown on aeolian sandy soil in Ningxia. The result shows that the content of slow release potassium and available potassium is low. The amount of available potassium and fixed potassium increases with raising amount of applied potash. Slow release potassium can be quickly replenished when available potassium is depleted, but slow release potassium is exhausted too, and the buffering capacity of supplying potassium is low. The content of potassium in grains and plants increases with the increasing amount of applied K in different treatments. The sequence of potassium recovery rate in different soil is as follows: sand-loam>fine-sand>coarse-sand. The capacity of supplying potassium in high-fertility soil is better than that in low-fertility soil, and rate of potassium recovery is high. Potassium nutrient affects growth and quality of wine-grapes.