The potassium-releasing characteristics of a bacterium from different minerals were studied through pure culture and soil column experiments. The results showed that the strain NBT of tested strains had the highest po...The potassium-releasing characteristics of a bacterium from different minerals were studied through pure culture and soil column experiments. The results showed that the strain NBT of tested strains had the highest potassium-releasing capacity. It released 35.2 mg/L after 7days of pure culture incubation at 28@, 31.8% - 1203.7% more than other tested strains. Potassium released from the minerals was obviously affected by pH, aerobic condition, soil and mineral properties. The strain NBT had a much higher potential to release potassium in the pH 6.5-8.0 than other pHs. Living cell inoculation resulted in an increase of 84.8% -127.9% compared with that of the dead cell inoculation. More aerobic condition produced more K than a less aerobic one. The potassium-releasing order was as follows: illite>feldspar>muscovite. Soil column experiment showed that the bacterial number increased from (2.6 - 3.0) × 106/g to (6.8 - 7.4) × 107/g. Soil available potassium content increased by 31.2 - 33.6mg/kg in yellow-brown soil and 21.7mg/kg in paddy soil, when inoculated with the strain NBT, 290.6% and 185.5% increment of the dead cell inoculation soils respectively.展开更多
A potassium solubilizing bacterial strain des- ignated EGT, which is tolerant of high temperature, was isolated from an earthworm's gut to obtain a bacterium that can weather potassium-bearing rock effectively throug...A potassium solubilizing bacterial strain des- ignated EGT, which is tolerant of high temperature, was isolated from an earthworm's gut to obtain a bacterium that can weather potassium-bearing rock effectively through solid-state fermentation. Molecular phylogeny and 16S rRNA gene sequence analysis demonstrated the bacterial strain was a member of the Streptomyces genus. To assess its potential to release potassium from silicate minerals, this strain was used to degrade potassium-bearing rock powder by solid-state fermentation. After fermentation, the amount of water-soluble A1, Fe and K of the substrate with active inoculum was higher than those of the control, which had autoclaved inoculum, and those of the fresh substrate. The result indicated that the strain had the ability to weather potassium-bearing rock and could be used as an inoculum in the production of potassium bio-fertilizer, due to its potassium release activity from rock and tolerance to high temperature.展开更多
[Objectives]To isolate and optimize the potassium releasing bacteria from sugarcane rhizosphere soil in Baitu Town,Gaoyao District,Zhaoqing City,Guangdong Province,and then evaluate their potassium-releasing ability,a...[Objectives]To isolate and optimize the potassium releasing bacteria from sugarcane rhizosphere soil in Baitu Town,Gaoyao District,Zhaoqing City,Guangdong Province,and then evaluate their potassium-releasing ability,and optimize the fermentation conditions of the strains with the best potassium-releasing ability,so as to provide a scientific basis for the development and production of potassium releasing bacteria fertilizer.[Methods]Potassium-solubilizing bacteria were isolated from sugarcane rhizosphere soil using potassium-feldspar powder as the potassium source of isolation medium by dilution coating method and plate streaking method.The isolated strains were identified by 16s rRNA sequence analysis.The potassium-releasing ability of each strain was determined by sodium tetraphenylborate(STPB)method,and the strain GK-37 with the optimal potassium-releasing ability was selected.The fermentation conditions of GK-37 strain were further optimized,and the effects of different carbon sources on its growth were mainly investigated.[Results]Seven strains of potassium-solubilizing bacteria were isolated and purified,and identified by 16s rRNA.They belonged to Pseudomonas knackmussii,Pseudomonas,Pseudomonas insulaes and Caballeronia zhejiangensis.Among the tested strains,strain GK-37 had the best potassium-releasing ability,and its potassium-releasing capacity was 26.99 mg/L.By optimizing the fermentation conditions of GK-37 strain,it was found that when the fermentation medium was sucrose as carbon source,the growth of the strain was the best.[Conclusions]In this study,the potassium releasing bacteria were successfully isolated and identified from the rhizosphere soil of sugarcane,and the strain GK-37 had high potassium-releasing ability.Through the optimization of fermentation conditions of GK-37 strain,sucrose was determined as the optimal carbon source.This study is expected to provide a valuable reference for the further development and production of potassium releasing bacteria fertilizer.展开更多
Bananas demand high amounts of potassium for optimal growth and productivity, yet deficiencies are widespread amid the low input production strategy of smallholder farmers in Uganda. Of the potassium pool in the soil,...Bananas demand high amounts of potassium for optimal growth and productivity, yet deficiencies are widespread amid the low input production strategy of smallholder farmers in Uganda. Of the potassium pool in the soil, 90% - 98% is unavailable for plant uptake. Judicious application of fertilisers is required to alleviate soil fertility problems complemented with manures and biofertilisers in an integrated nutrient management (INM) package. Biofertilisers such as potassium solubilising bacteria (KSB) have potential to solubilise unavailable forms of K in soil to forms that are readily absorbed by the plants. However, the added value of each component in this integrated K management package in apple bananas is not known. Therefore, an experiment was set up to quantify the relative contribution of mineral K, manure and KSB on the growth of apple bananas. Potted tissue culture plantlets of apple banana (cv. Sukali ndiizi) were used. The treatments comprised of a full factorial combination of mineral fertiliser (Muriate of potash, 60% K<sub>2</sub>O), animal manure and KSB (<em>Frateuria auranta</em>). The manure and muriate of potash were applied to supply a total of 150 kg<span style="white-space:nowrap;">⋅</span>K<span style="white-space:nowrap;">⋅</span>ha<span style="white-space:nowrap;"><sup>−</sup></span>. Soil microbiological assays were run to evaluate the contribution of indigenous microbial K solubilising activity in the soil to the experimental INM package. Data on pseudostem height, girth at collar and 30-cm height, leaf length and width at the widest point were collected once a week for 24 weeks. <em>Bacillus, Pseudomonas</em> and <em>Frateuria</em> were present as indigenous KSBs in the soil. The biofertiliser applied as <em>F. auranta</em> solubilised 7.4 mg<span style="white-space:nowrap;">⋅</span>K<span style="white-space:nowrap;">⋅</span>l<sup><span style="white-space:nowrap;">−</span>1</sup> (6.2 mg<span style="white-space:nowrap;">⋅</span>K<span style="white-space:nowrap;">⋅</span>kg<sup><span style="white-space:nowrap;">−</span>1</sup>) from soil minerals. The integrated K management package significantly (p < 0.001) increased the above ground biomass and leaf area of potted apple bananas by up to 57.5% compared to no input. The Study recommends an economic analysis study to determine the integrated K management package that would suit the resource constrained smallholder farmers.展开更多
文摘The potassium-releasing characteristics of a bacterium from different minerals were studied through pure culture and soil column experiments. The results showed that the strain NBT of tested strains had the highest potassium-releasing capacity. It released 35.2 mg/L after 7days of pure culture incubation at 28@, 31.8% - 1203.7% more than other tested strains. Potassium released from the minerals was obviously affected by pH, aerobic condition, soil and mineral properties. The strain NBT had a much higher potential to release potassium in the pH 6.5-8.0 than other pHs. Living cell inoculation resulted in an increase of 84.8% -127.9% compared with that of the dead cell inoculation. More aerobic condition produced more K than a less aerobic one. The potassium-releasing order was as follows: illite>feldspar>muscovite. Soil column experiment showed that the bacterial number increased from (2.6 - 3.0) × 106/g to (6.8 - 7.4) × 107/g. Soil available potassium content increased by 31.2 - 33.6mg/kg in yellow-brown soil and 21.7mg/kg in paddy soil, when inoculated with the strain NBT, 290.6% and 185.5% increment of the dead cell inoculation soils respectively.
基金supported by the National Natural Science Foundation of China (41173091, U1204405)Aid Project for the Leading Young Teachers in Henan Provincial Institutions of Higher Education of China (2012GGJS-284)Natural Science Foundation of Henan Educational Committee, China (12B180027, 14B180010)
文摘A potassium solubilizing bacterial strain des- ignated EGT, which is tolerant of high temperature, was isolated from an earthworm's gut to obtain a bacterium that can weather potassium-bearing rock effectively through solid-state fermentation. Molecular phylogeny and 16S rRNA gene sequence analysis demonstrated the bacterial strain was a member of the Streptomyces genus. To assess its potential to release potassium from silicate minerals, this strain was used to degrade potassium-bearing rock powder by solid-state fermentation. After fermentation, the amount of water-soluble A1, Fe and K of the substrate with active inoculum was higher than those of the control, which had autoclaved inoculum, and those of the fresh substrate. The result indicated that the strain had the ability to weather potassium-bearing rock and could be used as an inoculum in the production of potassium bio-fertilizer, due to its potassium release activity from rock and tolerance to high temperature.
基金Supported by Guangdong Province Rural Science and Technology Commissioner Project(KTP20240693)Zhaoqing University Project(QN202329)+3 种基金Science and Technology Innovation Guidance Project of Zhaoqing(202304038001)Undergraduate Innovation and Entrepreneurship Training Program(202410580011&X202310580120)The Third Batch of Innovation Research Team of Zhaoqing University(05)Quality Engineering and Teaching Reform Project of Zhaoqing University(zlgc202229,zlgc202261).
文摘[Objectives]To isolate and optimize the potassium releasing bacteria from sugarcane rhizosphere soil in Baitu Town,Gaoyao District,Zhaoqing City,Guangdong Province,and then evaluate their potassium-releasing ability,and optimize the fermentation conditions of the strains with the best potassium-releasing ability,so as to provide a scientific basis for the development and production of potassium releasing bacteria fertilizer.[Methods]Potassium-solubilizing bacteria were isolated from sugarcane rhizosphere soil using potassium-feldspar powder as the potassium source of isolation medium by dilution coating method and plate streaking method.The isolated strains were identified by 16s rRNA sequence analysis.The potassium-releasing ability of each strain was determined by sodium tetraphenylborate(STPB)method,and the strain GK-37 with the optimal potassium-releasing ability was selected.The fermentation conditions of GK-37 strain were further optimized,and the effects of different carbon sources on its growth were mainly investigated.[Results]Seven strains of potassium-solubilizing bacteria were isolated and purified,and identified by 16s rRNA.They belonged to Pseudomonas knackmussii,Pseudomonas,Pseudomonas insulaes and Caballeronia zhejiangensis.Among the tested strains,strain GK-37 had the best potassium-releasing ability,and its potassium-releasing capacity was 26.99 mg/L.By optimizing the fermentation conditions of GK-37 strain,it was found that when the fermentation medium was sucrose as carbon source,the growth of the strain was the best.[Conclusions]In this study,the potassium releasing bacteria were successfully isolated and identified from the rhizosphere soil of sugarcane,and the strain GK-37 had high potassium-releasing ability.Through the optimization of fermentation conditions of GK-37 strain,sucrose was determined as the optimal carbon source.This study is expected to provide a valuable reference for the further development and production of potassium releasing bacteria fertilizer.
文摘Bananas demand high amounts of potassium for optimal growth and productivity, yet deficiencies are widespread amid the low input production strategy of smallholder farmers in Uganda. Of the potassium pool in the soil, 90% - 98% is unavailable for plant uptake. Judicious application of fertilisers is required to alleviate soil fertility problems complemented with manures and biofertilisers in an integrated nutrient management (INM) package. Biofertilisers such as potassium solubilising bacteria (KSB) have potential to solubilise unavailable forms of K in soil to forms that are readily absorbed by the plants. However, the added value of each component in this integrated K management package in apple bananas is not known. Therefore, an experiment was set up to quantify the relative contribution of mineral K, manure and KSB on the growth of apple bananas. Potted tissue culture plantlets of apple banana (cv. Sukali ndiizi) were used. The treatments comprised of a full factorial combination of mineral fertiliser (Muriate of potash, 60% K<sub>2</sub>O), animal manure and KSB (<em>Frateuria auranta</em>). The manure and muriate of potash were applied to supply a total of 150 kg<span style="white-space:nowrap;">⋅</span>K<span style="white-space:nowrap;">⋅</span>ha<span style="white-space:nowrap;"><sup>−</sup></span>. Soil microbiological assays were run to evaluate the contribution of indigenous microbial K solubilising activity in the soil to the experimental INM package. Data on pseudostem height, girth at collar and 30-cm height, leaf length and width at the widest point were collected once a week for 24 weeks. <em>Bacillus, Pseudomonas</em> and <em>Frateuria</em> were present as indigenous KSBs in the soil. The biofertiliser applied as <em>F. auranta</em> solubilised 7.4 mg<span style="white-space:nowrap;">⋅</span>K<span style="white-space:nowrap;">⋅</span>l<sup><span style="white-space:nowrap;">−</span>1</sup> (6.2 mg<span style="white-space:nowrap;">⋅</span>K<span style="white-space:nowrap;">⋅</span>kg<sup><span style="white-space:nowrap;">−</span>1</sup>) from soil minerals. The integrated K management package significantly (p < 0.001) increased the above ground biomass and leaf area of potted apple bananas by up to 57.5% compared to no input. The Study recommends an economic analysis study to determine the integrated K management package that would suit the resource constrained smallholder farmers.