AIM:To investigate the effect of hydrogen sulfide(H2S)on smooth muscle motility in the gastric fundus.METHODS:The expression of cystathionineβ-synthase(CBS)and cystathionineγ-lyase(CSE)in cultured smooth muscle cell...AIM:To investigate the effect of hydrogen sulfide(H2S)on smooth muscle motility in the gastric fundus.METHODS:The expression of cystathionineβ-synthase(CBS)and cystathionineγ-lyase(CSE)in cultured smooth muscle cells from the gastric fundus was examined by the immunocytochemistry technique.The tension of the gastric fundus smooth muscle was recorded by an isometric force transducer under the condition of isometric contraction with each end of the smooth muscle strip tied with a silk thread.Intracellular recording was used to identify whether hydrogen sulfide affects the resting membrane potential of the gastric fundus in vitro.Cells were freshly separated from the gastric fundus of mice using a variety of enzyme digestion methods and whole-cell patch-clamp technique was used to find the effects of hydrogen sulfide on voltage-dependent potassium channel and calcium channel.Calcium imaging with fura-3AM loading was used to investigate the mechanism by which hydrogen sulfide regulates gastric fundus motility in cultured smooth muscle cells.RESULTS:We found that both CBS and CSE were expressed in the cul tured smooth muscle cel ls from the gastric fundus and that H2S increased the smooth muscle tension of the gastric fundus in mice at low concentrations.In addition,nicardipine and aminooxyacetic acid(AOAA),a CBS inhibitor,reduced the tension,whereas Nω-nitro-L-arginine methyl ester,a nonspecific nitric oxide synthase,increased the tension.The AOAA-induced relaxation was significantly recovered by H2S,and the Na HS-induced increase in tonic contraction was blocked by 5 mmol/L4-aminopyridine and 1μmol/L nicardipine.Na HS significantly depolarized the membrane potential and inhibited the voltage-dependent potassium currents.Moreover,Na HS increased L-type Ca2+currents and caused an elevation in intracellular calcium([Ca2+]i).CONCLUSION:These findings suggest that H2S may be an excitatory modulator in the gastric fundus in mice.The excitatory effect is mediated by voltagedependent potassium and L-type calcium channels.展开更多
Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies, and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumor...Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies, and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumors. This study investigated the functional expression of Nav1.5 and its effect on invasion behavior of human breast cancer cell line MDA-MB-231. The mRNA and protein expression of Nav1.5 was detected by real time PCR, Western Blot and immunofluorescence. The effects of Nav1.5 on cell proliferation, migration and invasion were respectively assessed by MTT and Transwell. The effects of Nav1.5 on the secretion of matrix metalloproteases (MMPs) by MDA-MB-231 were analyzed by RT-PCR. The over-expressed Nav 1.5 was present on the membrane of MDA-MB-231 cells. The invasion ability in vitro and the MMP-9 mRNA expression were respectively decreased to (47.82±0.53)% and (43.97±0.64)% (P〈0.05) respectively in MDA-MB-23 t cells treated with VGSCs specific inhibitor tetrodotoxin (TTX) by blocking Navl.5 activity. It was concluded that Navl.5 functional expression potentiated the invasive behavior of human breast cancer cell line MDA-MB-231 by increasing the secretion of MMP-9.展开更多
Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to it...Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear.Voltage-gated potassium channel(Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,Aand IK,Vchannels. Trigeminal ganglion(TRG)neurons were acutely disassociated from the rat TRG, and two different doses of CGA(0.2 and 1 mmol·L21) were applied to the cells.Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,Aand IK,Vchannels. The results demonstrated that 0.2 mmol·L21CGA decreased the peak current density of IK,A. Both 0.2 mmol·L21and1 mmol·L21CGA also caused a significant reduction in the activation and inactivation thresholds of IK,Aand IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,Aand IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects.展开更多
Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorl...Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour expo-sure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na+ channels using a patch-clamp technique. Volt-age-clamp recording results demonstrated that interleukin-6 suppressed Na+ currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na+channels in rat corti-cal neurons by interleukin-6 is time- and dose-dependent.展开更多
Introduction: Antibodies to voltage-gated potassium channels have been implicated in causing a host of peripheral and central nervous system disorders. However, the presence of these antibodies has not been previously...Introduction: Antibodies to voltage-gated potassium channels have been implicated in causing a host of peripheral and central nervous system disorders. However, the presence of these antibodies has not been previously associated with motor neuropathy. We describe the first case of acquired motor neuron disease associated with voltage-gated potas-sium channel antibodies. Case Report: The patient is an 81-year-old female who developed signs and symptoms of an idiopathic motor neuron disease. The patient was found to have increased antibodies to voltage-gated potassium chan-nels in the absence of a known metastatic or autoimmune process. Magnetic resonance imaging of the cervical spine demonstrated increased signal in the anterior horn regions of the cervical and upper thoracic spinal cord on T2-weighted imaging. The patient’s disease progression was refractory to both intravenous immunoglobulin and ster-oid therapy. Conclusion: Voltage-gated potassium channels may be causal or simply associated with motor neuron disease;this relationship needs to be elucidated. Testing for these antibodies may be warranted in cases of idiopathic rapidly progressing motor neuron disease.展开更多
Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsan...Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsants have been introduced, some types of seizures have still not been adequately controlled with these new and current therapies. There is an urgent need to develop new anticonvulsant drugs to control the many different types of seizures. Many studies have shown that the epilepsies involve more than one mechanism and therefore may be responsible for the various types of observed seizures. Recently reported studies have shown that a group of newly synthesized 6 Hz active anticonvulsant fluorinated N-benzamide enaminones exhibited selective inhibitions of voltage-gated sodium (Nav) channels. Nav channels are responsible for the initial inward currents during the depolarization phases of the action potential in excitable cells. The activation and opening of Nav channels result in the initial phases of action potentials. We hypothesize that there is an essential pharmacophore model for the interactions between these enaminones and the active sites of Nav channels. The research reported here is focused on molecular docking studies of the interactions that occur between the fluorinated N-benzamide enaminones and the Nav channels. These studies may open an avenue for designing anticonvulsant drugs by inhibiting Nav channels.展开更多
Voltage gated calcium channel(VGCC) antibodies are generally associated with Lambert-Eaton myasthenic syndrome. However the presence of this antibody has been associated with paraneoplastic as well as nonparaneoplasti...Voltage gated calcium channel(VGCC) antibodies are generally associated with Lambert-Eaton myasthenic syndrome. However the presence of this antibody has been associated with paraneoplastic as well as nonparaneoplastic cerebellar degeneration. Most patients with VGCC-antibody-positivity have small cell lung cancer(SCLC). Lambert-Eaton myasthenic syndrome(LEMS)is an autoimmune disease of the presynaptic part of the neuromuscular junction. Its classical clinical triadis proximal muscle weakness, areflexia and autonomic dysfunction. Fifty to sixty percent of LEMS patients have a neoplasia, usually SCLC. The co-occurrence of SCLC and LEMS causes more severe and progressive disease and shorter survival than non-paraneoplastic LEMS. Treatment includes 3,4 diaminopyridine for symptomatic purposes and immunotherapy with prednisolone, azathioprine or intravenous immunoglobulin in patients unresponsive to 3,4 diaminopyridine. Paraneoplastic cerebellar degeneration(PCD) is a syndrome characterized with severe, subacute pancerebellar dysfunction. Serum is positive for VGCC antibody in 41%-44% of patients, usually with the co-occurrence of SCLC. Clinical and electrophysiological features of LEMS are also present in 20%-40% of these patients. Unfortunately, PCD symptoms do not improve with immunotherapy. The role of VGCC antibody in the immunopathogenesis of LEMS is well known whereas its role in PCD is still unclear. All patients presenting with LEMS or PCD must be investigated for SCLC.展开更多
An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal-oxide-semiconductor field-effect transistor (MOSFET) is presented...An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal-oxide-semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLASTM 2D device simulator.展开更多
A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors(HEMTs).For GaN channel HEMTs with gate-drain spacing LGD=2.5μm,the brea...A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors(HEMTs).For GaN channel HEMTs with gate-drain spacing LGD=2.5μm,the breakdown voltage VBR increases from 518 V to 582 V by increasing gate metal height h from 0.2μm to 0.4μm.For GaN channel HEMTs with LGD=7μm,VBR increases from 953 V to 1310 V by increasing h from 0.8μm to 1.6μm.The breakdown voltage enhancement results from the increase of the gate sidewall capacitance and depletion region extension.For Al0.4Ga0.6N channel HEMT with LGD=7μm,VBR increases from 1535 V to 1763 V by increasing h from 0.8μm to 1.6μm,resulting in a high average breakdown electric field of 2.51 MV/cm.Simulation and analysis indicate that the high gate metal height is an effective method to enhance breakdown voltage in GaN-based HEMTs,and this method can be utilized in all the lateral semiconductor devices.展开更多
In the present work, a two-dimensional(2D) analytical framework of triple material symmetrical gate stack(TMGS)DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along wit...In the present work, a two-dimensional(2D) analytical framework of triple material symmetrical gate stack(TMGS)DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS;device simulator to affirm and formalize the proposed device structure.展开更多
Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituratio...Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca^2+ currents, delayed rectifier K^+ current and voltage-gated Na^+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.展开更多
This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage (BV) for an ultra-high-voltage (UHV) high-side thin layer silicon-on-insulator (SOI) p-channel low-...This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage (BV) for an ultra-high-voltage (UHV) high-side thin layer silicon-on-insulator (SOI) p-channel low-density metal- oxide semiconductor (LDMOS). Compared with the conventional simulation method, the new one is more accordant with the actual conditions of a device that can be used in the high voltage circuit. The BV of the SOI p-channel LDMOS can be properly represented and the effect of reduced bulk field can be revealed by employing the new simulation method. Simulation results show that the off-state (on-state) BV of the SOI p-channel LDMOS can reach 741 (620) V in the 3μm-thick buried oxide layer, 50μm-length drift region, and at -400 V back-gate voltage, enabling the device to be used in a 400 V UHV integrated circuit.展开更多
Voltage-gated sodium channels(VGSCs) are transmembrane proteins responsible for generation and conduction of action potentials in excitable cells.Physiological and pharmacological studies have demonstrated that VGSCs ...Voltage-gated sodium channels(VGSCs) are transmembrane proteins responsible for generation and conduction of action potentials in excitable cells.Physiological and pharmacological studies have demonstrated that VGSCs play a critical role in chronic pain associated with tissue or nerve injury.Many long-chain peptide toxins(60-76 amino acid residues) purified from the venom of Asian scorpion Buthus martensii Karsch(BmK) are investigated to be sodium channel-specific modulators.The α-like neurotoxins that can bind to receptor site 3 of sodium channels,named as BmK I and BmK abT,could induce nociceptive effects in rats.On the contrast,the β-like neurotoxins that can bind to receptor site 4 of sodium channels,named as BmK AS,BmK AS-1 and BmK IT2,could produce potent anti-nociceptive effects in animal pain models.BmK I could strongly prolong the fast inactivation of tetrodotoxin(TTX)-sensitive Na+ currents on the rat dorsal root ganglia(DRG) neurons together with the augmentation of peak current amplitude.However,BmK IT2 and BmK ASs,potently suppressed both the peak TTX-resistant and TTX-sensitive Na+ currents on rat small DRG neurons.Moreover,BmK ASs could decrease the excitability of small DRG neurons.Thus,the nociception/anti-nociception induced by scorpion neurotoxins may attribute to their distinct modulation on sodium channels in primary afferent sensory neurons.Therefore,the sodium channel-specific modulators from BmK venom could be used as not only pharmacological tools for better understanding the roles of VGSCs in pain signal conduction,but also lead molecules in the development of ideal analgesics targeting VGSCs.展开更多
AIM:To investigate the cytotoxic mechanism of caribbean maitotoxin(MTX-C) in mammalian cells.METHODS:We used whole-cell patch-clamp techniques and fluorescence calcium imaging to determine the cellular toxic mechanism...AIM:To investigate the cytotoxic mechanism of caribbean maitotoxin(MTX-C) in mammalian cells.METHODS:We used whole-cell patch-clamp techniques and fluorescence calcium imaging to determine the cellular toxic mechanisms of MTX-C in insulin secreting HIT-T15 cells,which is a system where the effects of MTX have been observed.HIT-T15 cells stably express L-type calcium current,making it a suitable model for this study.Using the fluorescence calcium indicator Indo-1 AM,we found that there is a profound increase in HIT-T15 intracellular free calcium 3 min after application of 200 nmol/L MTX-C.RESULTS:About 3 min after perfusion of MTX-C,a gradual increase in free calcium concentration was observed.This elevation was sustained throughout the entire recording period.Application of MTX-C did not elicit the L-type calcium current,but large cationiccurrents appeared after applying MTX-C to the extracellular solution.The current-voltage relationship of the cation current is approximately linear within the voltage range from-60 to 50 mV,but flattened at voltages at-80 and-100 mV.These results indicate that MTX-C induces a non-voltage activated,inward current under normal physiological conditions,which by itself or through a secondary mechanism results in a large amount of cationic influx.The biophysical mechanism of MTX-C is different to its isoform,pacific maitotoxin(MTX-P),when the extracellular calcium is removed.CONCLUSION:We conclude that MTX-C causes the opening of non-selective,non-voltage-activated ion channels,which elevates level of intracellular calcium concentration and leads to cellular toxicities.展开更多
Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nay cha...Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nay chan- nels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the pro- gress in computational studies, especially the simula- tion studies, on these proteins in the past years.展开更多
Voltage-gated sodium channels (Navs) play an important role in human pain sensation. However, the expression and role of Nav subtypes in native human sensory neurons are unclear. To address this issue, we obtained h...Voltage-gated sodium channels (Navs) play an important role in human pain sensation. However, the expression and role of Nav subtypes in native human sensory neurons are unclear. To address this issue, we obtained human dorsal root ganglion (hDRG) tissues from healthy donors. PCR analysis of seven DRG-expressed Nav subtypes revealed that the hDRG has higher expression of Navl.7 (,-~ 50% of total Nav expression) and lower expres- sion of Navl.8 (~ 12%), whereas the mouse DRG has higher expression of Nav 1.8 (- 45%) and lower expression of Navl.7 (- 18%). To mimic Nav regulation in chronic pain, we treated hDRG neurons in primary cultures with paclitaxel (0.1-1 μmol/L) for 24 h. Paclitaxel increased the Navl.7 but not Navl.8 expression and also increased the transient Na+ currents and action potential firing frequency in small-diameter (〈50 ~tm) hDRG neurons. Thus, the hDRG provides a translational model in which to study "human pain in a dish" and test new pain therapeutics.展开更多
Background The cell layer of the ciliary epithelium is responsible for aqueous humor secretion and maintenance. Ion channels play an important role in these processes. The main aim of this study was to determine wheth...Background The cell layer of the ciliary epithelium is responsible for aqueous humor secretion and maintenance. Ion channels play an important role in these processes. The main aim of this study was to determine whether the well-characterized members of the Kvl family (Kv1.3) contribute to the Kv currents in ciliary epithelium. Methods New Zealand White rabbits were maintained in a 12 hours light/dark cycle. Ciliary epithelium samples were isolated from the rabbits. We used Western blotting and immunocytochemistry to identify the expression and location of a voltage-gated potassium channel Kvl.3 in ciliary body epithelium. Membrane potential change after adding of Kvl.3 inhibitor margatoxin (MgTX) was observed with a fluorescence method. Results Western blotting and immunocytochemical studies showed that the Kv1.3 protein expressed in pigment ciliary epithelium and nonpigment ciliary epithelium, however it seemed to express more in the apical membrane of the nonpigmented epithelial cells. One nmol/L margatoxin, a specific inhibitor of Kv1.3 channels caused depolarization of the cultured nonpigmented epithelium (NPE) membrane potential. The cytosolic calcium increased after NPE cell depolarization, this increase of cytosolic calcium was partially blocked by 12.5 μmol/L dantrolene and 10 μmol/L nifedipine. These observations suggest that Kv1.3 channels modulate ciliary epithelium potential and effect calcium dependent mechanisms. Conclusion Kv1.3 channels contribute to K+ efflux at the membrane of rabbit ciliary epithelium.展开更多
基金Supported by National Natural Science Foundation of China,No.31171107,No.31071011 and No.31271236
文摘AIM:To investigate the effect of hydrogen sulfide(H2S)on smooth muscle motility in the gastric fundus.METHODS:The expression of cystathionineβ-synthase(CBS)and cystathionineγ-lyase(CSE)in cultured smooth muscle cells from the gastric fundus was examined by the immunocytochemistry technique.The tension of the gastric fundus smooth muscle was recorded by an isometric force transducer under the condition of isometric contraction with each end of the smooth muscle strip tied with a silk thread.Intracellular recording was used to identify whether hydrogen sulfide affects the resting membrane potential of the gastric fundus in vitro.Cells were freshly separated from the gastric fundus of mice using a variety of enzyme digestion methods and whole-cell patch-clamp technique was used to find the effects of hydrogen sulfide on voltage-dependent potassium channel and calcium channel.Calcium imaging with fura-3AM loading was used to investigate the mechanism by which hydrogen sulfide regulates gastric fundus motility in cultured smooth muscle cells.RESULTS:We found that both CBS and CSE were expressed in the cul tured smooth muscle cel ls from the gastric fundus and that H2S increased the smooth muscle tension of the gastric fundus in mice at low concentrations.In addition,nicardipine and aminooxyacetic acid(AOAA),a CBS inhibitor,reduced the tension,whereas Nω-nitro-L-arginine methyl ester,a nonspecific nitric oxide synthase,increased the tension.The AOAA-induced relaxation was significantly recovered by H2S,and the Na HS-induced increase in tonic contraction was blocked by 5 mmol/L4-aminopyridine and 1μmol/L nicardipine.Na HS significantly depolarized the membrane potential and inhibited the voltage-dependent potassium currents.Moreover,Na HS increased L-type Ca2+currents and caused an elevation in intracellular calcium([Ca2+]i).CONCLUSION:These findings suggest that H2S may be an excitatory modulator in the gastric fundus in mice.The excitatory effect is mediated by voltagedependent potassium and L-type calcium channels.
文摘Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies, and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumors. This study investigated the functional expression of Nav1.5 and its effect on invasion behavior of human breast cancer cell line MDA-MB-231. The mRNA and protein expression of Nav1.5 was detected by real time PCR, Western Blot and immunofluorescence. The effects of Nav1.5 on cell proliferation, migration and invasion were respectively assessed by MTT and Transwell. The effects of Nav1.5 on the secretion of matrix metalloproteases (MMPs) by MDA-MB-231 were analyzed by RT-PCR. The over-expressed Nav 1.5 was present on the membrane of MDA-MB-231 cells. The invasion ability in vitro and the MMP-9 mRNA expression were respectively decreased to (47.82±0.53)% and (43.97±0.64)% (P〈0.05) respectively in MDA-MB-23 t cells treated with VGSCs specific inhibitor tetrodotoxin (TTX) by blocking Navl.5 activity. It was concluded that Navl.5 functional expression potentiated the invasive behavior of human breast cancer cell line MDA-MB-231 by increasing the secretion of MMP-9.
基金supported by the National Science Foundation of China (Grant No. 81000456)the Science and Technology Department of Sichuan Province (Grant No. 2009SZ0171)
文摘Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear.Voltage-gated potassium channel(Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,Aand IK,Vchannels. Trigeminal ganglion(TRG)neurons were acutely disassociated from the rat TRG, and two different doses of CGA(0.2 and 1 mmol·L21) were applied to the cells.Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,Aand IK,Vchannels. The results demonstrated that 0.2 mmol·L21CGA decreased the peak current density of IK,A. Both 0.2 mmol·L21and1 mmol·L21CGA also caused a significant reduction in the activation and inactivation thresholds of IK,Aand IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,Aand IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects.
基金supported by a grant from the National Natural Science Foundation of China,No.30972766,31170852,81001322,81172795,81173048the Specialized Research Fund for the Doctoral Program of Colleges and Universities,No.20094402110004
文摘Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour expo-sure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na+ channels using a patch-clamp technique. Volt-age-clamp recording results demonstrated that interleukin-6 suppressed Na+ currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na+channels in rat corti-cal neurons by interleukin-6 is time- and dose-dependent.
文摘Introduction: Antibodies to voltage-gated potassium channels have been implicated in causing a host of peripheral and central nervous system disorders. However, the presence of these antibodies has not been previously associated with motor neuropathy. We describe the first case of acquired motor neuron disease associated with voltage-gated potas-sium channel antibodies. Case Report: The patient is an 81-year-old female who developed signs and symptoms of an idiopathic motor neuron disease. The patient was found to have increased antibodies to voltage-gated potassium chan-nels in the absence of a known metastatic or autoimmune process. Magnetic resonance imaging of the cervical spine demonstrated increased signal in the anterior horn regions of the cervical and upper thoracic spinal cord on T2-weighted imaging. The patient’s disease progression was refractory to both intravenous immunoglobulin and ster-oid therapy. Conclusion: Voltage-gated potassium channels may be causal or simply associated with motor neuron disease;this relationship needs to be elucidated. Testing for these antibodies may be warranted in cases of idiopathic rapidly progressing motor neuron disease.
文摘Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsants have been introduced, some types of seizures have still not been adequately controlled with these new and current therapies. There is an urgent need to develop new anticonvulsant drugs to control the many different types of seizures. Many studies have shown that the epilepsies involve more than one mechanism and therefore may be responsible for the various types of observed seizures. Recently reported studies have shown that a group of newly synthesized 6 Hz active anticonvulsant fluorinated N-benzamide enaminones exhibited selective inhibitions of voltage-gated sodium (Nav) channels. Nav channels are responsible for the initial inward currents during the depolarization phases of the action potential in excitable cells. The activation and opening of Nav channels result in the initial phases of action potentials. We hypothesize that there is an essential pharmacophore model for the interactions between these enaminones and the active sites of Nav channels. The research reported here is focused on molecular docking studies of the interactions that occur between the fluorinated N-benzamide enaminones and the Nav channels. These studies may open an avenue for designing anticonvulsant drugs by inhibiting Nav channels.
文摘Voltage gated calcium channel(VGCC) antibodies are generally associated with Lambert-Eaton myasthenic syndrome. However the presence of this antibody has been associated with paraneoplastic as well as nonparaneoplastic cerebellar degeneration. Most patients with VGCC-antibody-positivity have small cell lung cancer(SCLC). Lambert-Eaton myasthenic syndrome(LEMS)is an autoimmune disease of the presynaptic part of the neuromuscular junction. Its classical clinical triadis proximal muscle weakness, areflexia and autonomic dysfunction. Fifty to sixty percent of LEMS patients have a neoplasia, usually SCLC. The co-occurrence of SCLC and LEMS causes more severe and progressive disease and shorter survival than non-paraneoplastic LEMS. Treatment includes 3,4 diaminopyridine for symptomatic purposes and immunotherapy with prednisolone, azathioprine or intravenous immunoglobulin in patients unresponsive to 3,4 diaminopyridine. Paraneoplastic cerebellar degeneration(PCD) is a syndrome characterized with severe, subacute pancerebellar dysfunction. Serum is positive for VGCC antibody in 41%-44% of patients, usually with the co-occurrence of SCLC. Clinical and electrophysiological features of LEMS are also present in 20%-40% of these patients. Unfortunately, PCD symptoms do not improve with immunotherapy. The role of VGCC antibody in the immunopathogenesis of LEMS is well known whereas its role in PCD is still unclear. All patients presenting with LEMS or PCD must be investigated for SCLC.
文摘An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal-oxide-semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLASTM 2D device simulator.
基金Project supported by the National Key Science&Technology Special Project of China(Grant No.2017ZX01001301)the National Key Research and Development Program of China(Grant No.2016YFB0400100)the National Natural Science Foundation of China(Grant Nos.51777168 and 61801374).
文摘A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors(HEMTs).For GaN channel HEMTs with gate-drain spacing LGD=2.5μm,the breakdown voltage VBR increases from 518 V to 582 V by increasing gate metal height h from 0.2μm to 0.4μm.For GaN channel HEMTs with LGD=7μm,VBR increases from 953 V to 1310 V by increasing h from 0.8μm to 1.6μm.The breakdown voltage enhancement results from the increase of the gate sidewall capacitance and depletion region extension.For Al0.4Ga0.6N channel HEMT with LGD=7μm,VBR increases from 1535 V to 1763 V by increasing h from 0.8μm to 1.6μm,resulting in a high average breakdown electric field of 2.51 MV/cm.Simulation and analysis indicate that the high gate metal height is an effective method to enhance breakdown voltage in GaN-based HEMTs,and this method can be utilized in all the lateral semiconductor devices.
文摘In the present work, a two-dimensional(2D) analytical framework of triple material symmetrical gate stack(TMGS)DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS;device simulator to affirm and formalize the proposed device structure.
基金supported by Science Development Foundation of Tianjin Institute of Education(20070301)
文摘Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca^2+ currents, delayed rectifier K^+ current and voltage-gated Na^+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60906038)
文摘This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage (BV) for an ultra-high-voltage (UHV) high-side thin layer silicon-on-insulator (SOI) p-channel low-density metal- oxide semiconductor (LDMOS). Compared with the conventional simulation method, the new one is more accordant with the actual conditions of a device that can be used in the high voltage circuit. The BV of the SOI p-channel LDMOS can be properly represented and the effect of reduced bulk field can be revealed by employing the new simulation method. Simulation results show that the off-state (on-state) BV of the SOI p-channel LDMOS can reach 741 (620) V in the 3μm-thick buried oxide layer, 50μm-length drift region, and at -400 V back-gate voltage, enabling the device to be used in a 400 V UHV integrated circuit.
基金grants from National Basic Research Development Program of China(No.2006CB500801)National Natural Sciences Foundation of China(No.30370446)
文摘Voltage-gated sodium channels(VGSCs) are transmembrane proteins responsible for generation and conduction of action potentials in excitable cells.Physiological and pharmacological studies have demonstrated that VGSCs play a critical role in chronic pain associated with tissue or nerve injury.Many long-chain peptide toxins(60-76 amino acid residues) purified from the venom of Asian scorpion Buthus martensii Karsch(BmK) are investigated to be sodium channel-specific modulators.The α-like neurotoxins that can bind to receptor site 3 of sodium channels,named as BmK I and BmK abT,could induce nociceptive effects in rats.On the contrast,the β-like neurotoxins that can bind to receptor site 4 of sodium channels,named as BmK AS,BmK AS-1 and BmK IT2,could produce potent anti-nociceptive effects in animal pain models.BmK I could strongly prolong the fast inactivation of tetrodotoxin(TTX)-sensitive Na+ currents on the rat dorsal root ganglia(DRG) neurons together with the augmentation of peak current amplitude.However,BmK IT2 and BmK ASs,potently suppressed both the peak TTX-resistant and TTX-sensitive Na+ currents on rat small DRG neurons.Moreover,BmK ASs could decrease the excitability of small DRG neurons.Thus,the nociception/anti-nociception induced by scorpion neurotoxins may attribute to their distinct modulation on sodium channels in primary afferent sensory neurons.Therefore,the sodium channel-specific modulators from BmK venom could be used as not only pharmacological tools for better understanding the roles of VGSCs in pain signal conduction,but also lead molecules in the development of ideal analgesics targeting VGSCs.
文摘AIM:To investigate the cytotoxic mechanism of caribbean maitotoxin(MTX-C) in mammalian cells.METHODS:We used whole-cell patch-clamp techniques and fluorescence calcium imaging to determine the cellular toxic mechanisms of MTX-C in insulin secreting HIT-T15 cells,which is a system where the effects of MTX have been observed.HIT-T15 cells stably express L-type calcium current,making it a suitable model for this study.Using the fluorescence calcium indicator Indo-1 AM,we found that there is a profound increase in HIT-T15 intracellular free calcium 3 min after application of 200 nmol/L MTX-C.RESULTS:About 3 min after perfusion of MTX-C,a gradual increase in free calcium concentration was observed.This elevation was sustained throughout the entire recording period.Application of MTX-C did not elicit the L-type calcium current,but large cationiccurrents appeared after applying MTX-C to the extracellular solution.The current-voltage relationship of the cation current is approximately linear within the voltage range from-60 to 50 mV,but flattened at voltages at-80 and-100 mV.These results indicate that MTX-C induces a non-voltage activated,inward current under normal physiological conditions,which by itself or through a secondary mechanism results in a large amount of cationic influx.The biophysical mechanism of MTX-C is different to its isoform,pacific maitotoxin(MTX-P),when the extracellular calcium is removed.CONCLUSION:We conclude that MTX-C causes the opening of non-selective,non-voltage-activated ion channels,which elevates level of intracellular calcium concentration and leads to cellular toxicities.
基金We gratefully thank Mengdie Xia for her contribution in preparing the figures. This work was supported by the National Natural Science Foundation of China (Grant Nos. 31470033 and 31321062).
文摘Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nay chan- nels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the pro- gress in computational studies, especially the simula- tion studies, on these proteins in the past years.
基金supported in part by NIH RO1Grants NS87988,DE17794,and DE22743 to R.R.J and NS89479 to S.Y.L and R.R.J
文摘Voltage-gated sodium channels (Navs) play an important role in human pain sensation. However, the expression and role of Nav subtypes in native human sensory neurons are unclear. To address this issue, we obtained human dorsal root ganglion (hDRG) tissues from healthy donors. PCR analysis of seven DRG-expressed Nav subtypes revealed that the hDRG has higher expression of Navl.7 (,-~ 50% of total Nav expression) and lower expres- sion of Navl.8 (~ 12%), whereas the mouse DRG has higher expression of Nav 1.8 (- 45%) and lower expression of Navl.7 (- 18%). To mimic Nav regulation in chronic pain, we treated hDRG neurons in primary cultures with paclitaxel (0.1-1 μmol/L) for 24 h. Paclitaxel increased the Navl.7 but not Navl.8 expression and also increased the transient Na+ currents and action potential firing frequency in small-diameter (〈50 ~tm) hDRG neurons. Thus, the hDRG provides a translational model in which to study "human pain in a dish" and test new pain therapeutics.
文摘Background The cell layer of the ciliary epithelium is responsible for aqueous humor secretion and maintenance. Ion channels play an important role in these processes. The main aim of this study was to determine whether the well-characterized members of the Kvl family (Kv1.3) contribute to the Kv currents in ciliary epithelium. Methods New Zealand White rabbits were maintained in a 12 hours light/dark cycle. Ciliary epithelium samples were isolated from the rabbits. We used Western blotting and immunocytochemistry to identify the expression and location of a voltage-gated potassium channel Kvl.3 in ciliary body epithelium. Membrane potential change after adding of Kvl.3 inhibitor margatoxin (MgTX) was observed with a fluorescence method. Results Western blotting and immunocytochemical studies showed that the Kv1.3 protein expressed in pigment ciliary epithelium and nonpigment ciliary epithelium, however it seemed to express more in the apical membrane of the nonpigmented epithelial cells. One nmol/L margatoxin, a specific inhibitor of Kv1.3 channels caused depolarization of the cultured nonpigmented epithelium (NPE) membrane potential. The cytosolic calcium increased after NPE cell depolarization, this increase of cytosolic calcium was partially blocked by 12.5 μmol/L dantrolene and 10 μmol/L nifedipine. These observations suggest that Kv1.3 channels modulate ciliary epithelium potential and effect calcium dependent mechanisms. Conclusion Kv1.3 channels contribute to K+ efflux at the membrane of rabbit ciliary epithelium.