Perovskite solar cell has gained widespread attention as a promising technology for renewable energy.However, their commercial viability has been hampered by their long-term stability and potential Pb leakage. Herein,...Perovskite solar cell has gained widespread attention as a promising technology for renewable energy.However, their commercial viability has been hampered by their long-term stability and potential Pb leakage. Herein, we demonstrate a bifunctional passivator of the potassium tartrate(PT) to address both challenges. PT minimizes the Pb leakage in perovskites and also heals cationic vacancy defects, resulting in improved device performance and stability. Benefiting from PT modification, the power conversion efficiency(PCE) is improved to 23.26% and the Pb leakage in unencapsulated films is significantly reduced to 9.79 ppm. Furthermore, the corresponding device exhibits no significant decay in PCE after tracking at the maximum power point(MPP) for 2000 h under illumination(LED source, 100 mW cm^(-2)).展开更多
An ionic conductivity prediction equation at low concentration for two acid salts is proposed taking into account the dissociation and association equilibria among ions. The salts considered are sodium and potassium h...An ionic conductivity prediction equation at low concentration for two acid salts is proposed taking into account the dissociation and association equilibria among ions. The salts considered are sodium and potassium hydrogen tartrates. There is no additional parameter of high order terms except for the Onsager's coefficient of limited term in the new equation. Results show a complex conductance of acidic tartrates in aqueous solution. The molar conductivities of metal ions are nearly constant such that the contributions from hydrogen and tartrate ions decrease with concentration, while the molar conductivity of bitartrate ion increases with concentration.展开更多
基金funding support from the National Natural Science Foundation of China (52172182, 21975028, 22011540377, 22005035, U21A20172)。
文摘Perovskite solar cell has gained widespread attention as a promising technology for renewable energy.However, their commercial viability has been hampered by their long-term stability and potential Pb leakage. Herein, we demonstrate a bifunctional passivator of the potassium tartrate(PT) to address both challenges. PT minimizes the Pb leakage in perovskites and also heals cationic vacancy defects, resulting in improved device performance and stability. Benefiting from PT modification, the power conversion efficiency(PCE) is improved to 23.26% and the Pb leakage in unencapsulated films is significantly reduced to 9.79 ppm. Furthermore, the corresponding device exhibits no significant decay in PCE after tracking at the maximum power point(MPP) for 2000 h under illumination(LED source, 100 mW cm^(-2)).
基金Supported by the National Natural Science Foundation of China(No.29736170)
文摘An ionic conductivity prediction equation at low concentration for two acid salts is proposed taking into account the dissociation and association equilibria among ions. The salts considered are sodium and potassium hydrogen tartrates. There is no additional parameter of high order terms except for the Onsager's coefficient of limited term in the new equation. Results show a complex conductance of acidic tartrates in aqueous solution. The molar conductivities of metal ions are nearly constant such that the contributions from hydrogen and tartrate ions decrease with concentration, while the molar conductivity of bitartrate ion increases with concentration.