Salinity is the major limiting factor for forage productivity in southwestern coastal region of Bangladesh. Some introduced forage cultivars have been shown promising adaptability in saline conditions. The objective o...Salinity is the major limiting factor for forage productivity in southwestern coastal region of Bangladesh. Some introduced forage cultivars have been shown promising adaptability in saline conditions. The objective of this study was to assess the productivity and measure the agronomic characteristics of several introduced grass species with different created soil salinity levels. This study was conducted at the net house of Dr. Purnendu Gain Field Laboratory, Agrotechnology Discipline, and Khulna University during the period from December 2017 to February 2018. The experiment was laid out in a factorial randomized complete block design with seven replications. The experiment consisted of two factor viz. soil salinity levels (S<sub>1</sub> = 0.48, S<sub>2</sub> = 5.8, S<sub>3</sub> = 7.9, S<sub>4</sub> = 9.4, S<sub>5</sub> = 15 d<span style="white-space:nowrap;">·</span>Sm<sup><span style="white-space:nowrap;">−</span>1</sup>) and thirteen forage genotypes. Salinity levels and forage genotypes significantly (p < 0.05) influence all the growth parameters and biomass yield. The growth parameters and yield gradually decreased with the advance of soil salinity level. The tallest plant height (109.85 cm) was found in S<sub>1</sub> at 90 DAS while the shortest plant (24.53 cm) was obtained in S<sub>5</sub> at 90 DAS. Soil salinity had a significant difference (p < 0.001) on plant height at 90 DAS. The highest numbers of tillers (3.36) were found in S<sub>1</sub>, whereas the lowest (0.48) was in S<sub>5</sub> at 75 DAS. Soil salinity had a significant difference (p < 0.001) on Number of tillers at 75 DAS. The highest biomass wt. (29.14 g) was found in S<sub>1</sub>, while the lowest biomass wt. (3.52 g) was obtained in S<sub>5</sub> at 60 DAS. Soil salinity had a significant difference (p < 0.001) on biomass wt. at 60 DAS. The highest dry matter% (DM%) (21.24%) was found in S<sub>4</sub>, while the lowest DM (18.74%) was obtained in S<sub>1</sub> at 60 DAS. Soil salinity had a significant difference (p < 0.001) on dry matter% (DM%) wt. at 90 DAS. The tallest plant height (81.93 cm) was found in Pakchong, while the shortest plant (20.13 cm) was obtained in Endropogan at 60DAS. Soil salinity had a significant difference (p < 0.001) on plant height at 60 DAS. The highest numbers of tillers (3.07) were also found in Napier-3, whereas the lowest (0.80) was in H. Jaumbo at 75 DAS (S<sub>1</sub> + S<sub>2</sub> + S<sub>3</sub> + S<sub>4</sub> + S<sub>5</sub>). Soil salinity had a significant difference (p < 0.001) on Number of tillers at 75 DAS. The highest biomass wt. (38.60 g) was found in Pakchong, while the lowest biomass wt. (4.49 g) was obtained in Oats at 60 DAS. Soil salinity had a significant difference (p < 0.001) on biomass wt. at 60 DAS (S<sub>1</sub> + S<sub>2</sub> + S<sub>3</sub> + S<sub>4</sub> + S<sub>5</sub>). The highest (DM%) was found in Endropogan (24.68%), while the lowest DM (18.37%) was obtained Spelindida. Soil salinity had a significant difference (p < 0.001) on DM at 90 DAS. It can be concluded that Pakchong appears to be highly salt tolerant.展开更多
Field studies were conducted on a sandy soil during autumn of 2010 and 2011 in an arid region of Tunisia to investigate the effects of nitrogen and irrigation regimes with saline water on yield and water productivity ...Field studies were conducted on a sandy soil during autumn of 2010 and 2011 in an arid region of Tunisia to investigate the effects of nitrogen and irrigation regimes with saline water on yield and water productivity (WP) of potato (Solanum tuberosum L. cv. Spunta) and soil salinity. For the two years, irrigation treatments consisted in water replacements of cumulated crop evapotranspiration (ETc) at levels of 100% (I100, full irrigation), 60% (I60) and 30% (I30), when the readily available water in I100 treatment was depleted, while the nitrogen treatments (N) were 0, 100, 200, and 300 kg/ha (No, N100, N200, and N300). Results showed that soil salinity values remained lower than those of electrical conductivity of irrigation water (ECiw) and were the lowest under treatment I100 and the highest with I30 treatment. Relatively low ECe values were also observed under I60 treatment. The highest potato yields for the two years were obtained with I100 treatment. Compared to I100, significant reductions in potato yields were observed under I60 and I30 deficit irrigation treatments resulting from a reduction in tubers number/m2 and tuber weight. The water productivity (WP) was found to significantly vary among treatments, where the highest and the lowest values were observed for I30 and I100 treatments, respectively. Potato yield and WP increased with an increase in nitrogen rates. The rate of 300 kg N/ha was seen to give good yield and higher WP of potato under full (I100) and deficit (I60) irrigation treatments. However, application of N adversely affected potato yield and WP, when N level applied above 200 kg N/ha at I30. The WP was improved by N supply, but its effect decreased as the irrigation level increased. The IWP at I100, which produced the highest potato yield, was 8.5 and 9.9 kg/m3 with N300 but this increased to 11.9 and 15.6 kg/m3 at I30 with N200, in 2010 and 2011, respectively. These results suggested that potato in arid region could be cultivated with acceptable yields while saving irrigation water and reducing nitrogen supply but it was essential to exploit the interaction effect between these two parameters to maximize resource use efficiency.展开更多
Sorghum is an important source of food, feed and raw material for brewing, and is expected to be a promising bioenergy crop. Sorghum is well known for its strong resistance to abiotic stress and wide adaptability, and...Sorghum is an important source of food, feed and raw material for brewing, and is expected to be a promising bioenergy crop. Sorghum is well known for its strong resistance to abiotic stress and wide adaptability, and salt tolerance is one of its main characteristics. Increasing sorghum planting acreage on saline-alkalien land is one way to effectively use this kind of marginal soil. In this paper, domestic and overseas research on plant tolerance to soil salinity and alkalinity in sorghum, including salt-tolerant genetics and breeding, physiology, cultivation, and identification of tolerant germplasms, are reviewed. Suggestions for further studies on salinity and alkalinity tolerance in sorghum are given, and the prospects for sorghum production in saline-alkalien land are discussed.展开更多
The sesame crop is usually avoided in salt-affected areas because of the various effects of saline stress on plants. Besides varying between species, salinity effects are known to vary for genotypes of the same specie...The sesame crop is usually avoided in salt-affected areas because of the various effects of saline stress on plants. Besides varying between species, salinity effects are known to vary for genotypes of the same species as well as plant development stages. Thus, through the irrigation of plants with saline water, this study evaluates tolerance to saline stress of new sesame genotypes in different phenological stages. Three experiments were carried out under greenhouse conditions, using the sesame genotypes BRS Seda, LAG-927561 and LAG-26514. Water with different levels of electrical conductivity (ECw = 0.6, 1.6, 2.6, 3.6 and 4.6 dS m-1) was used to irrigate plants during germination and initial growth stages, as well as the entire crop cycle. Tolerance to saline stress (3.6 dS m-1) during growth and production stages was also studied. Salinity did not affect sesame germination, but seedling growth was hindered from the ECw of 1.6 dS m-1 onwards, and plant height was the most affected growth variable. Seed production is affected by salinity, regardless of the phenological stage in which plants are exposed to salinity. The strains LAG-927561 and LAG-26514 show promising signs in studies on adaptation to saline stress.展开更多
Binadhan-10 & Binadhan-11 are climate smart stress tolerant high yielding rice varieties (yield > 4 t⋅ha−1) have saline tolerant EC up to 12 ds/m and submergence tolerant up to 20 - 25 days ...Binadhan-10 & Binadhan-11 are climate smart stress tolerant high yielding rice varieties (yield > 4 t⋅ha−1) have saline tolerant EC up to 12 ds/m and submergence tolerant up to 20 - 25 days capacity. The present study was an attempt to analyze the yield gap of stress tolerant varieties Binadhan-10 & Binadhan-11 in some selected areas of Bangladesh. The objectives of the study were: 1) to estimate the yield gap of Binadhan-10 &-11 growers among the study areas;2) to identify the factors affecting the yield of these variety;and 3) to suggest some policy guidelines to minimize the yield gap. The study was conducted in eight Binadhan-10 & Binadhan-11 growing areas in Bangladesh. In this study, four districts namely Satkhira, Khulna, Barishal, and Cox’s Bazar were used for Binadhan-10 and Mymensingh, Jamalpur, Sherpur and Sunamgonj were taken for Binadhan-11. It is based on primary level data from eight sub-districts among the study areas. A total of 240 farmers were randomly selected (30 from each location) to collect the data with a pre-designed questionnaire. Farmer were grouped according to saline affected and not-affected for saline tolerant variety Binadhan-10 and not affected, affected (1 - 10 days) and highly affected (10 - 20 days) for submergence tolerant rice variety Binadhan-11 to identify existing yield gap. Tabular as well as Zandstra method were applied for analysis the data. The study also found factors affecting the gap and some policy guidelines to minimize the gap.展开更多
本研究旨在阐明硅素穗肥调控盐碱地水稻抽穗期矿质元素分配的作用机制。以常规粳稻淮稻5号为材料,于2019年和2020年在江苏沿海大丰盐碱地(盐分3.4 g kg^(–1),p H 8.3)开展大田试验,设置3个硅肥用量(0、60和100 kg hm^(–2)),于幼穗分...本研究旨在阐明硅素穗肥调控盐碱地水稻抽穗期矿质元素分配的作用机制。以常规粳稻淮稻5号为材料,于2019年和2020年在江苏沿海大丰盐碱地(盐分3.4 g kg^(–1),p H 8.3)开展大田试验,设置3个硅肥用量(0、60和100 kg hm^(–2)),于幼穗分化期随穗肥施入。结果表明:(1)硅素穗肥促进抽穗期植株养分吸收,提高成熟期干物质量和产量,与Si0相比,Si60平均增产4.3%,Si100平均增产8.6%;(2)硅素穗肥优化了水稻不同部位K^(+)、Na^(+)分配,提高水稻叶片、上部叶鞘、中下部茎秆K^(+)含量,降低穗、上部叶片、叶鞘、茎秆Na^(+)含量,提高各部位的K^(+)/Na^(+),进而提高离子稳态;(3)硅素穗肥促进叶片大量元素N、P、Ca、Mg和微量元素Fe、Mn的积累,与Si0相比,硅素穗肥显著提高了16.5%的P含量、18.5%的Mg含量、22.4%的Ca含量、19.8%的Fe含量,缓解盐碱胁迫对水稻叶片的不利影响。综上所述,硅素穗肥优化了盐碱胁迫下水稻矿质元素的吸收分配,减轻幼嫩器官盐胁迫程度,促进叶片多种有益元素积累,促进水稻养分吸收,且100 kg hm^(–2)效果最佳。展开更多
[目的]研究不同盐碱胁迫对金丝楸幼苗生长、光合和生理指标的影响,并结合转录组测序分析,探究楸树耐盐碱的生理机制和分子机制。[方法]采用盆栽法对金丝楸幼苗进行不同盐碱胁迫处理,分析其生物量、光合及生理指标对不同盐碱响应的差异,...[目的]研究不同盐碱胁迫对金丝楸幼苗生长、光合和生理指标的影响,并结合转录组测序分析,探究楸树耐盐碱的生理机制和分子机制。[方法]采用盆栽法对金丝楸幼苗进行不同盐碱胁迫处理,分析其生物量、光合及生理指标对不同盐碱响应的差异,采用Illumina高通量测序技术进行转录组测序,通过生物信息学分析盐碱胁迫对转录水平的影响。[结果]不同盐碱胁迫下,金丝楸幼苗叶片受伤害程度为Na_(2)CO_(3)>混合盐碱>NaCl;新增株高和地径、地上部和根的干质量和鲜质量、生物量、根冠比均受到明显抑制,并随盐碱浓度增加而抑制加强,但生长胁迫指数均随浓度的增加而降低;丙二醛(MDA)含量和相对电导率都随胁迫浓度增加而不同程度上升,超氧化物歧化酶(SOD)活性、可溶性糖含量、脯氨酸(Pro)含量、叶绿素总量和光合速率都呈现先上升后下降的趋势。转录组测序共产生约60.4 Gb原始数据,组装得到55793个Unigenes,其中29534(52.93%)个Unigenes获得了注释;通过差异表达基因(DEGs)分析,3个比较组(CK vs NaCl,CK vs Na_(2)CO_(3)和CK vs混合盐碱)分别筛选出1779、2835和4059个DEGs;DEGs GO富集分析表明,膜的整体成分、膜的内在成分、催化活性、类异戊二烯代谢和合成过程、氧化还原酶活性等条目被显著富集;DEGs KEGG分析表明,苯丙素生物合成、淀粉和蔗糖代谢、植物激素信号转导、萜类主干生物合成和精氨酸代谢等通路被显著富集;此外,在DEGs中鉴定的bHLH、ERF、MYB-related、NAC、C2H2、WRKY、MYB和b ZIP转录因子家族成员最多。[结论]金丝楸主要通过积累可溶性糖和Pro,提高SOD酶活和光合作用来抵御盐碱胁迫,但都呈现“低促高抑”的现象,说明其具有一定阈值。金丝楸通过调节膜成分、催化活性、类异戊二烯代谢和生物合成过程、苯丙素生物合成、淀粉和蔗糖代谢、植物激素信号转导等生物过程和代谢途径,并结合有关转录因子共同响应盐碱胁迫。本研究为深入研究楸树耐盐碱生理机制和分子机制提供科学的理论依据。展开更多
文摘Salinity is the major limiting factor for forage productivity in southwestern coastal region of Bangladesh. Some introduced forage cultivars have been shown promising adaptability in saline conditions. The objective of this study was to assess the productivity and measure the agronomic characteristics of several introduced grass species with different created soil salinity levels. This study was conducted at the net house of Dr. Purnendu Gain Field Laboratory, Agrotechnology Discipline, and Khulna University during the period from December 2017 to February 2018. The experiment was laid out in a factorial randomized complete block design with seven replications. The experiment consisted of two factor viz. soil salinity levels (S<sub>1</sub> = 0.48, S<sub>2</sub> = 5.8, S<sub>3</sub> = 7.9, S<sub>4</sub> = 9.4, S<sub>5</sub> = 15 d<span style="white-space:nowrap;">·</span>Sm<sup><span style="white-space:nowrap;">−</span>1</sup>) and thirteen forage genotypes. Salinity levels and forage genotypes significantly (p < 0.05) influence all the growth parameters and biomass yield. The growth parameters and yield gradually decreased with the advance of soil salinity level. The tallest plant height (109.85 cm) was found in S<sub>1</sub> at 90 DAS while the shortest plant (24.53 cm) was obtained in S<sub>5</sub> at 90 DAS. Soil salinity had a significant difference (p < 0.001) on plant height at 90 DAS. The highest numbers of tillers (3.36) were found in S<sub>1</sub>, whereas the lowest (0.48) was in S<sub>5</sub> at 75 DAS. Soil salinity had a significant difference (p < 0.001) on Number of tillers at 75 DAS. The highest biomass wt. (29.14 g) was found in S<sub>1</sub>, while the lowest biomass wt. (3.52 g) was obtained in S<sub>5</sub> at 60 DAS. Soil salinity had a significant difference (p < 0.001) on biomass wt. at 60 DAS. The highest dry matter% (DM%) (21.24%) was found in S<sub>4</sub>, while the lowest DM (18.74%) was obtained in S<sub>1</sub> at 60 DAS. Soil salinity had a significant difference (p < 0.001) on dry matter% (DM%) wt. at 90 DAS. The tallest plant height (81.93 cm) was found in Pakchong, while the shortest plant (20.13 cm) was obtained in Endropogan at 60DAS. Soil salinity had a significant difference (p < 0.001) on plant height at 60 DAS. The highest numbers of tillers (3.07) were also found in Napier-3, whereas the lowest (0.80) was in H. Jaumbo at 75 DAS (S<sub>1</sub> + S<sub>2</sub> + S<sub>3</sub> + S<sub>4</sub> + S<sub>5</sub>). Soil salinity had a significant difference (p < 0.001) on Number of tillers at 75 DAS. The highest biomass wt. (38.60 g) was found in Pakchong, while the lowest biomass wt. (4.49 g) was obtained in Oats at 60 DAS. Soil salinity had a significant difference (p < 0.001) on biomass wt. at 60 DAS (S<sub>1</sub> + S<sub>2</sub> + S<sub>3</sub> + S<sub>4</sub> + S<sub>5</sub>). The highest (DM%) was found in Endropogan (24.68%), while the lowest DM (18.37%) was obtained Spelindida. Soil salinity had a significant difference (p < 0.001) on DM at 90 DAS. It can be concluded that Pakchong appears to be highly salt tolerant.
文摘Field studies were conducted on a sandy soil during autumn of 2010 and 2011 in an arid region of Tunisia to investigate the effects of nitrogen and irrigation regimes with saline water on yield and water productivity (WP) of potato (Solanum tuberosum L. cv. Spunta) and soil salinity. For the two years, irrigation treatments consisted in water replacements of cumulated crop evapotranspiration (ETc) at levels of 100% (I100, full irrigation), 60% (I60) and 30% (I30), when the readily available water in I100 treatment was depleted, while the nitrogen treatments (N) were 0, 100, 200, and 300 kg/ha (No, N100, N200, and N300). Results showed that soil salinity values remained lower than those of electrical conductivity of irrigation water (ECiw) and were the lowest under treatment I100 and the highest with I30 treatment. Relatively low ECe values were also observed under I60 treatment. The highest potato yields for the two years were obtained with I100 treatment. Compared to I100, significant reductions in potato yields were observed under I60 and I30 deficit irrigation treatments resulting from a reduction in tubers number/m2 and tuber weight. The water productivity (WP) was found to significantly vary among treatments, where the highest and the lowest values were observed for I30 and I100 treatments, respectively. Potato yield and WP increased with an increase in nitrogen rates. The rate of 300 kg N/ha was seen to give good yield and higher WP of potato under full (I100) and deficit (I60) irrigation treatments. However, application of N adversely affected potato yield and WP, when N level applied above 200 kg N/ha at I30. The WP was improved by N supply, but its effect decreased as the irrigation level increased. The IWP at I100, which produced the highest potato yield, was 8.5 and 9.9 kg/m3 with N300 but this increased to 11.9 and 15.6 kg/m3 at I30 with N200, in 2010 and 2011, respectively. These results suggested that potato in arid region could be cultivated with acceptable yields while saving irrigation water and reducing nitrogen supply but it was essential to exploit the interaction effect between these two parameters to maximize resource use efficiency.
基金supported by the earmarked fund for China Agriculture Research System(CARS-06)
文摘Sorghum is an important source of food, feed and raw material for brewing, and is expected to be a promising bioenergy crop. Sorghum is well known for its strong resistance to abiotic stress and wide adaptability, and salt tolerance is one of its main characteristics. Increasing sorghum planting acreage on saline-alkalien land is one way to effectively use this kind of marginal soil. In this paper, domestic and overseas research on plant tolerance to soil salinity and alkalinity in sorghum, including salt-tolerant genetics and breeding, physiology, cultivation, and identification of tolerant germplasms, are reviewed. Suggestions for further studies on salinity and alkalinity tolerance in sorghum are given, and the prospects for sorghum production in saline-alkalien land are discussed.
文摘The sesame crop is usually avoided in salt-affected areas because of the various effects of saline stress on plants. Besides varying between species, salinity effects are known to vary for genotypes of the same species as well as plant development stages. Thus, through the irrigation of plants with saline water, this study evaluates tolerance to saline stress of new sesame genotypes in different phenological stages. Three experiments were carried out under greenhouse conditions, using the sesame genotypes BRS Seda, LAG-927561 and LAG-26514. Water with different levels of electrical conductivity (ECw = 0.6, 1.6, 2.6, 3.6 and 4.6 dS m-1) was used to irrigate plants during germination and initial growth stages, as well as the entire crop cycle. Tolerance to saline stress (3.6 dS m-1) during growth and production stages was also studied. Salinity did not affect sesame germination, but seedling growth was hindered from the ECw of 1.6 dS m-1 onwards, and plant height was the most affected growth variable. Seed production is affected by salinity, regardless of the phenological stage in which plants are exposed to salinity. The strains LAG-927561 and LAG-26514 show promising signs in studies on adaptation to saline stress.
文摘Binadhan-10 & Binadhan-11 are climate smart stress tolerant high yielding rice varieties (yield > 4 t⋅ha−1) have saline tolerant EC up to 12 ds/m and submergence tolerant up to 20 - 25 days capacity. The present study was an attempt to analyze the yield gap of stress tolerant varieties Binadhan-10 & Binadhan-11 in some selected areas of Bangladesh. The objectives of the study were: 1) to estimate the yield gap of Binadhan-10 &-11 growers among the study areas;2) to identify the factors affecting the yield of these variety;and 3) to suggest some policy guidelines to minimize the yield gap. The study was conducted in eight Binadhan-10 & Binadhan-11 growing areas in Bangladesh. In this study, four districts namely Satkhira, Khulna, Barishal, and Cox’s Bazar were used for Binadhan-10 and Mymensingh, Jamalpur, Sherpur and Sunamgonj were taken for Binadhan-11. It is based on primary level data from eight sub-districts among the study areas. A total of 240 farmers were randomly selected (30 from each location) to collect the data with a pre-designed questionnaire. Farmer were grouped according to saline affected and not-affected for saline tolerant variety Binadhan-10 and not affected, affected (1 - 10 days) and highly affected (10 - 20 days) for submergence tolerant rice variety Binadhan-11 to identify existing yield gap. Tabular as well as Zandstra method were applied for analysis the data. The study also found factors affecting the gap and some policy guidelines to minimize the gap.
文摘本研究旨在阐明硅素穗肥调控盐碱地水稻抽穗期矿质元素分配的作用机制。以常规粳稻淮稻5号为材料,于2019年和2020年在江苏沿海大丰盐碱地(盐分3.4 g kg^(–1),p H 8.3)开展大田试验,设置3个硅肥用量(0、60和100 kg hm^(–2)),于幼穗分化期随穗肥施入。结果表明:(1)硅素穗肥促进抽穗期植株养分吸收,提高成熟期干物质量和产量,与Si0相比,Si60平均增产4.3%,Si100平均增产8.6%;(2)硅素穗肥优化了水稻不同部位K^(+)、Na^(+)分配,提高水稻叶片、上部叶鞘、中下部茎秆K^(+)含量,降低穗、上部叶片、叶鞘、茎秆Na^(+)含量,提高各部位的K^(+)/Na^(+),进而提高离子稳态;(3)硅素穗肥促进叶片大量元素N、P、Ca、Mg和微量元素Fe、Mn的积累,与Si0相比,硅素穗肥显著提高了16.5%的P含量、18.5%的Mg含量、22.4%的Ca含量、19.8%的Fe含量,缓解盐碱胁迫对水稻叶片的不利影响。综上所述,硅素穗肥优化了盐碱胁迫下水稻矿质元素的吸收分配,减轻幼嫩器官盐胁迫程度,促进叶片多种有益元素积累,促进水稻养分吸收,且100 kg hm^(–2)效果最佳。
文摘[目的]研究不同盐碱胁迫对金丝楸幼苗生长、光合和生理指标的影响,并结合转录组测序分析,探究楸树耐盐碱的生理机制和分子机制。[方法]采用盆栽法对金丝楸幼苗进行不同盐碱胁迫处理,分析其生物量、光合及生理指标对不同盐碱响应的差异,采用Illumina高通量测序技术进行转录组测序,通过生物信息学分析盐碱胁迫对转录水平的影响。[结果]不同盐碱胁迫下,金丝楸幼苗叶片受伤害程度为Na_(2)CO_(3)>混合盐碱>NaCl;新增株高和地径、地上部和根的干质量和鲜质量、生物量、根冠比均受到明显抑制,并随盐碱浓度增加而抑制加强,但生长胁迫指数均随浓度的增加而降低;丙二醛(MDA)含量和相对电导率都随胁迫浓度增加而不同程度上升,超氧化物歧化酶(SOD)活性、可溶性糖含量、脯氨酸(Pro)含量、叶绿素总量和光合速率都呈现先上升后下降的趋势。转录组测序共产生约60.4 Gb原始数据,组装得到55793个Unigenes,其中29534(52.93%)个Unigenes获得了注释;通过差异表达基因(DEGs)分析,3个比较组(CK vs NaCl,CK vs Na_(2)CO_(3)和CK vs混合盐碱)分别筛选出1779、2835和4059个DEGs;DEGs GO富集分析表明,膜的整体成分、膜的内在成分、催化活性、类异戊二烯代谢和合成过程、氧化还原酶活性等条目被显著富集;DEGs KEGG分析表明,苯丙素生物合成、淀粉和蔗糖代谢、植物激素信号转导、萜类主干生物合成和精氨酸代谢等通路被显著富集;此外,在DEGs中鉴定的bHLH、ERF、MYB-related、NAC、C2H2、WRKY、MYB和b ZIP转录因子家族成员最多。[结论]金丝楸主要通过积累可溶性糖和Pro,提高SOD酶活和光合作用来抵御盐碱胁迫,但都呈现“低促高抑”的现象,说明其具有一定阈值。金丝楸通过调节膜成分、催化活性、类异戊二烯代谢和生物合成过程、苯丙素生物合成、淀粉和蔗糖代谢、植物激素信号转导等生物过程和代谢途径,并结合有关转录因子共同响应盐碱胁迫。本研究为深入研究楸树耐盐碱生理机制和分子机制提供科学的理论依据。