Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other p...Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.展开更多
This paper proposes a new two dimensional(2D) analytical model for a germanium(Ge) single gate silicon-on-insulator tunnel field effect transistor(SG SOI TFET). The parabolic approximation technique is used to s...This paper proposes a new two dimensional(2D) analytical model for a germanium(Ge) single gate silicon-on-insulator tunnel field effect transistor(SG SOI TFET). The parabolic approximation technique is used to solve the 2D Poisson equation with suitable boundary conditions and analytical expressions are derived for the surfacepotential,theelectricfieldalongthechannelandtheverticalelectricfield.Thedeviceoutputtunnellingcurrent is derived further by using the electric fields. The results show that Ge based TFETs have significant improvements inon-currentcharacteristics.Theeffectivenessoftheproposedmodelhasbeenverifiedbycomparingtheanalytical model results with the technology computer aided design(TCAD) simulation results and also comparing them with results from a silicon based TFET.展开更多
基金Project supported by the National Natural Science Foundation of China(Grand Nos.11147158 and 11264020)the Natural Science Foundation of Jiangxi Province,China(Grand No.2010GQW0031)the Scientific Research Program of the Education Bureau of Jiangxi Province,China(Grand No.GJJ12483)
文摘Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.
文摘This paper proposes a new two dimensional(2D) analytical model for a germanium(Ge) single gate silicon-on-insulator tunnel field effect transistor(SG SOI TFET). The parabolic approximation technique is used to solve the 2D Poisson equation with suitable boundary conditions and analytical expressions are derived for the surfacepotential,theelectricfieldalongthechannelandtheverticalelectricfield.Thedeviceoutputtunnellingcurrent is derived further by using the electric fields. The results show that Ge based TFETs have significant improvements inon-currentcharacteristics.Theeffectivenessoftheproposedmodelhasbeenverifiedbycomparingtheanalytical model results with the technology computer aided design(TCAD) simulation results and also comparing them with results from a silicon based TFET.