期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Yield potential and nitrogen use efficiency of China's super rice 被引量:24
1
作者 WANG Fei PENG Shao-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1000-1008,共9页
In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and... In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and intersubspecific heterosis. Significant progress has been made in the last two decades, with a large number of super rice varieties being approved by the MOA and the national average grain yield being increased from 6.21 t ha^-1 in 1996 to 6.89 t ha^-1 in 2015. The increase in yield potential of super rice was mainly due to the larger sink size which resulted from larger panicles. Moreover, higher photosynthetic capacity and improved root physiological traits before heading contributed to the increase in sink size. However, the poor grain filling of the later-flowering inferior spikelets and the quickly decreased root activity of super rice during grain filling period restrict the achievement of high yield potential of super rice. Furthermore, it is widely accepted that the high yield potential of super rice requires a large amount of N fertilizer input, which has resulted in an increase in N consumption and a decrease in nitrogen use efficiency (NUE), although it remains unclear whether super rice per se is responsible for the latter. In the present paper, we review the history and success of China's Super Rice Breeding Pro- gram, summarize the advances in agronomic and physiological mechanisms underlying the high yield potential of super rice, and examine NUE differences between super rice and ordinary rice varieties. We also provide a brief introduction to the Green Super Rice Project, which aims to diversify breeding targets beyond yield improvement alone to address global concerns around resource use and environmental change. It is hoped that this review will facilitate further improvement of rice production into the future. 展开更多
关键词 super rice yield potential nitrogen use efficiency Green Super Rice
下载PDF
Effects of single basal application of coated compound fertilizer on yield and nitrogen use efficiency in double-cropped rice 被引量:9
2
作者 Jiana Chen Fangbo Cao +3 位作者 Hairong Xiong Min Huang Yingbin Zou Yuanfu Xiong 《The Crop Journal》 SCIE CAS CSCD 2017年第3期265-270,共6页
Fertilizer plays an important role in increasing rice yield. More than half of all fertilizer applied to the field is not taken up, resulting in environmental damage and substantial economic losses. To address these c... Fertilizer plays an important role in increasing rice yield. More than half of all fertilizer applied to the field is not taken up, resulting in environmental damage and substantial economic losses. To address these concerns, a low-cost, coated compound fertilizer named "Xiang Nong Da"(XND), requiring only a single basal application, was studied. A two-year field experiment was conducted to test the effects of XND application on rice yield and nitrogen fertilizer use efficiency. An ordinary uncoated compound fertilizer(UNCF), with 20% more nutrients and split application was selected as the control. The yield of XND-treated rice was only 3.1% lower than that of the control, an insignificant difference. There were no significant differences between N use efficiency indices of the two fertilizer treatments except for N partial factor productivity(PFP_N). PFP_Nof XND treatment was 19.7%–23.2% higher than the control, a significant difference. This result indicates that a 20% decrease in N application rate is possible with XND without yield reduction and with savings in both labor and time. 展开更多
关键词 RICE YIELD fertilizer nitrogen use efficiency
下载PDF
Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize 被引量:13
3
作者 LI Guang-hao CHENG Gui-gen +1 位作者 LU Wei-ping LU Da-lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期554-564,共11页
Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield ga... Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield gap with potential maize yield and improve nitrogen use efficiency (NUE).A 2-year field experiment (2018–2019) was conducted to evaluate the effects of SF rates from 0 to 405 kg N ha^(–1) (named F0,SF225,SF270,SF315,SF360,and SF405) and 405 kg N ha^(–1) of common fertilizer(CF405) on the grain yield,biomass and N accumulation,enzymatic activities related with carbon–nitrogen metabolism,NUE and economic analysis.Results indicated that the highest grain yields,NUEs and economic returns were achieved at SF360in both varieties.The enzymatic activities related with carbon–nitrogen metabolism,pre-and post-silking accumulation of biomass and N increased with increasing SF rate,and they were the highest at SF360 and SF405.The grain yield at SF360had no significant difference with that at SF405.However,the N partial factor productivity,N agronomic efficiency and N recovery efficiency at SF360 were 9.8,6.6 and 8.9% higher than that at SF405.The results also indicated that the average grain yields,NUE and economic benefit at SF405 were 5.2,12.3 and 18.1% higher than that at CF405.In conclusion,decreasing N rate from 405 kg ha^(–1)(CF) to 360 kg ha^(–1)(SF) could effectively reduce the yield gap between realized and potential maize yields.The N decreased by 11.1%,but the yield,NUE and economic benefit increased by 3.2,22.2 and 17.5%,which created a simple,efficient and business-friendly system for spring maize production in Jiangsu Province,China. 展开更多
关键词 spring maize grain yield slow release fertilizer nitrogen use efficiency economic benefit
下载PDF
Effects of mechanized deep placement of nitrogen fertilizer rate and type on rice yield and nitrogen use efficiency in Chuanxi Plain, China 被引量:5
4
作者 ZHU Cong-hua OUYANG Yu-yuan +4 位作者 DIAO You YU Jun-qi LUO Xi ZHENG Jia-guo LI Xu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期581-592,共12页
This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It ... This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It provides theoretical support for N-saving and improves quality and production efficiency of machine-transplanted rice.Using a single-factor complete randomized block design in field experiments in 2018 and 2019,seven N-fertilization treatments were applied,with the fertilizer being surface broadcast and/or mechanically placed beside the seedlings at (5.5±0.5) cm soil depth when transplanting.The treatments were:N0,no N fertilizer;U1,180 kg N ha^(–1) as urea,surface broadcast manually before transplanting;U2,108 kg N ha^(–1) as urea,surface broadcast manually before transplanting,and 72 kg N ha^(–1) as urea surface broadcast manually on the 10th d after transplanting,which is not only the local common fertilization method,but also the reference treatment;UD,180 kg N ha^(–1) as urea,mechanically deep-placed when transplanting;M1,81.6 kg N ha^(–1) as urea and 38.4 kg N ha^(–1) as controlled-release urea (CRU),mechanically deep-placed when transplanting;M2,102 kg N ha^(–1) as urea and48 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting;M3,122.4 kg N ha^(–1) as urea and 57.6 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting.The effects of the N fertilizer treatments on rice yield and NUE were consistent in the 2 yr.With a N application rate of 180 kg ha^(–1),compared with U2,the N recovery efficiency (NRE),N agronomic use efficiency (NAE) and yield under the UD treatment were 20.6,3.5 and 1.1% higher in 2018,and 4.6,1.7 and 1.2% higher in 2019,respectively.Compared with urea alone (U1,U2 or UD),the NRE,NAE and yield achieved by M3 (combined application of urea and controlled-release urea) were higher by 9.2–73.3%,18.6–61.5% and 6.5–16.5%(2018),and 22.2–65.2%,25.6–75.0% and 5.9–13.9%(2019),respectively.Compared with M3,the lower-N treatments M1 and M2 significantly increased NRE by 4.0–7.8% in 2018 and 3.1–4.3% in 2019,respectively.Compared with urea surface application (U1 or U2),the yield under the M2 treatment was higher by 4.3–12.9% in 2018 and 3.6–10.1% in 2019,respectively.Compared with U2,the NRE and NAE under the M2 treatment was higher by 36.9 and 36.3% in 2018,and 33.2 and 37.4% in 2019,mainly because of higher N uptake.There was no significant difference in the concentration of nitrate in the top 0–20 cm soil under U1,U2 and M2 treatments during the full heading and maturity stages.During the full heading stage,U2 produced the highest concentration of nitrite in 0–20 cm and 20–40 cm soil among the N fertilizer treatments.In conclusion,mechanized deep placement of mixed urea and controlled-release urea (M2) at transplanting is a highly-efficient cultivation technology that enables increased yield of machine-transplanted rice and improved NUE,while reducing the amount of N-fertilization applied. 展开更多
关键词 RICE N-fertilization rate controlled release urea side deep fertilization YIELD nitrogen use efficiency
下载PDF
Carbon sequestration rate,nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system 被引量:3
5
作者 Nafiu Garba HAYATU LIU Yi-ren +7 位作者 HAN Tian-fu Nano Alemu DABA ZHANG Lu SHEN Zhe LI Ji-wen Haliru MUAZU Sobhi Faid LAMLOM ZHANG Hui-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2848-2864,共17页
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical... Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China. 展开更多
关键词 carbon sequestration chemical fertilizer long term organic manure nitrogen use efficiency paddy rice
下载PDF
Effect of Indigenous Nitrogen Supply of Soil on the Grain Yield and Fertilizer-N Use Efficiency in Rice 被引量:3
6
作者 LIU Li-jun Xu Wei TANG Cheng WANG Zhi-qin YANG Jian-chang 《Rice science》 SCIE 2005年第4期267-274,共8页
The effects of application of N fertilizer on wheat on the grain yield and N use efficiency (FNUE) of rice in the wheat-rice rotation system, as well as on the soil fertility were studies. N-fertilizer application o... The effects of application of N fertilizer on wheat on the grain yield and N use efficiency (FNUE) of rice in the wheat-rice rotation system, as well as on the soil fertility were studies. N-fertilizer application on wheat significantly increased total N, arnrnoniurn-N and nitrate-N contents in paddy field, resulting in high indigenous N supply of soil (INS). Compared with low INS, the effect of N rate on the grain yield of rice was reduced significantly, and FNUE was decreased under high INS. These results indicated that high INS was one of the main reasons for the low FNUE in rice. 展开更多
关键词 soil indigenous nitrogen supply soil fertility RICE yield fertilizer use efficiency nitrogen
下载PDF
Effects of Nitrogen-phosphorus-potassium Combined Fertilization on Rice Yield and Fertilizer Use Efficiency in Jianghan Plain 被引量:1
7
作者 Xiangping WANG Wei ZHOU +1 位作者 Pubing ZHENG Guilan HUANG 《Agricultural Biotechnology》 CAS 2022年第2期85-90,共6页
[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was car... [Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain. 展开更多
关键词 RICE nitrogen PHOSPHORUS Potassium fertilizers fertilizer use efficiency YIELD
下载PDF
Effects of Nitrogen Application on Nitrogen Dynamic Changes and Nitrogen Use Efficiency in Maize 被引量:1
8
作者 赵洪祥 边少锋 +3 位作者 彭涛涛 孙宁 闫伟平 冯士成 《Agricultural Science & Technology》 CAS 2013年第12期1797-1803,共7页
[Objective] This study and nitrogen use efficiency in aimed to investigate the nitrogen dynamic changes maize under different nitrogen application patterns. [Method] Maize cultivar Xianyu 335 was selected as the expe... [Objective] This study and nitrogen use efficiency in aimed to investigate the nitrogen dynamic changes maize under different nitrogen application patterns. [Method] Maize cultivar Xianyu 335 was selected as the experimental material and was planted at two densities 85 000 and 95 000 plants/hm2. The total amount of fertilizers applied kept constant. The nitrogen content in leaves, stems, sheathes, husks, grains, cobs, tassels and filaments of maize plants in jointing stage, silking stage, 15, 30, 45 and 60 d after silking stage was measured. [Result] Total nitrogen content in maize plant reached the peak around 45 d after silking stage and a higher population was helpful to nitrogen accumulation. Total nitrogen content of maize plant was positively correlated with yield and it got closer in higher popula- tion. Grain nitrogen content and nitrogen harvest index were significantly positively correlated with yield in higher population. High ratio of nitrogen fertilizer in silking stage was beneficial to nitrogen accumulation in leaf and ear, as well as nitrogen translocation in stem and sheath, but high ratio of nitrogen fertilizer in earlier stage delayed nitrogen metabolism. Nitrogen uptake peak was from silking stage to 15 d after silking stage, and nitrogen uptake rate increased high ratio of nitrogen fertilizer was applied in later growth stages and moved forward in higher plant population. [Conclusion] It was advantaged for nitrogen fertilizer efficiency on condition that ni- trogen application was moved backward. Accumulating too much nitrogen in earlier stages inhibited nitrogen uptake in later periods 展开更多
关键词 nitrogen fertilizer MAIZE nitrogen use efficiency
下载PDF
A Preliminary Study on Nitrogen Use Efficiency of Hybrid Rice Combinations Derived from CMS Line Rong 18A
9
作者 徐敬洪 蔡良俊 +6 位作者 沈超 张帆 王富全 文勇 袁亚章 李志义 杨震 《Agricultural Science & Technology》 CAS 2016年第9期2070-2073,2089,共5页
In order to investigate characteristics of nitrogen use efficiency of CMS line Rong 18A, four hybrid rice combinations (Rong18 You188, Rong18 You198, Rong18 You662, Rong18 You908) derived from CMS line Rong 18A were... In order to investigate characteristics of nitrogen use efficiency of CMS line Rong 18A, four hybrid rice combinations (Rong18 You188, Rong18 You198, Rong18 You662, Rong18 You908) derived from CMS line Rong 18A were used as experimental materials with Ⅱ You838 and Gangyou725 as controls. A split-plot experimental design was performed with four nitrogen fertilizer application rates to analyze the effects of different nitrogen fertilizer application rates on the yield and yield component factors of rice. The results showed that nitrogen fertilizer could significantly increase effective panicle number to improve rice yield. The increment in rice yield per unit nitrogen fertilizer application rate demonstrated a descending trend with the increase of nitrogen fertilizer application rate. Under low nitrogen levels, hybrid rice combinations derived from Rong 18A exhibited relatively high nitrogen use efficiency and showed remarkably high nitrogen use efficiency under low nitrogen levels. 展开更多
关键词 Rong 18A Hybrid rice nitrogen fertilizer use efficiency
下载PDF
Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice 被引量:11
10
作者 ZHAO Can HUANG Heng +6 位作者 QIAN Zi-hui JIANG Heng-xin LIU Guang-ming XU Ke HU Ya-jie DAI Qigen HUO Zhong-yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1487-1502,共16页
Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitr... Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitrogen rate(RNR)of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields.Therefore,a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River,China.Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen.We found that under the same nitrogen application rate,the yield of RTN3 increased by 9.64 and 10.18%in rice varieties NJ9108 and NJ5718,respectively,compared with the farmers’fertilizer practices(FFP).The nitrogen accumulation of RTN3 was the highest at heading stage,at 11.30 t ha^(–1)across 2018 and 2019.Under the same nitrogen application rate,the N agronomic use efficiency(NAE),N physiological efficiency(NPE)and N recovery efficiency(NRE)of RTN3 were 8.1–21.28%,8.51–41.76%and 0.28–14.52%higher than those of the other fertilization modes,respectively.RNR led to decreases in SPAD value,leaf area index(LAI),dry matter accumulation,nitrogen accumulation,and nitrogen use efficiency.These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen,and RNR1 could achieve the goals of saving cost and increasing resource use efficiency.Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation. 展开更多
关键词 japonica rice(Oryza sativa L.) fertilization mode side deep placement of nitrogen grain yield nitrogen use efficiency
下载PDF
Modified fertilization management of summer maize(Zea mays L.) in northern China improves grain yield and efficiency of nitrogen use 被引量:9
11
作者 CHENG Yi ZHAO Jie +5 位作者 LIU Zhen-xiang HUO Zhi-jin LIU Peng DONG Shu-ting ZHANG Ji-wang ZHAO Bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第8期1644-1657,共14页
Improving the yield of maize grain per unit area is needed to meet the growing demand for it in China, where the availability of fertile land is very limited.Modified fertilization management and planting density are ... Improving the yield of maize grain per unit area is needed to meet the growing demand for it in China, where the availability of fertile land is very limited.Modified fertilization management and planting density are efficient methods for increasing crop yield.Field experiments were designed to investigate the influence of modified fertilization management and planting density on grain yield and nitrogen use efficiency of the popular maize variety Zhengdan 958, in four treatments including local farmer's practice(FP), high-yielding and high efficiency cultivation(HH), super high-yielding cultivation(SH), and the control(CK).Trials were conducted in three locations of the Huang-Huai-Hai Plain in northern China.Compared with FP, SH was clearly able to promote N absorption and dry matter accumulation in post-anthesis, and achieve high yield and N use efficiency by increasing planting density and postponing the supplementary application of fertilizers.However, with an increase in planting density, the demand of N increased along with grain yield.Due to the input of too much N fertilizer, the efficiency of N use in SH was low.Applying less total N, ameliorating cultivation and cropping management practices should be considered as priority strategies to augment production potential and finally achieve synchronization between high yield and high N efficiency in fertile soils.However, in situations where soil fertility is low, achieving high yield and high N use efficiency in maize will likely depend on increased planting density and appropriate application of supplementary fertilizers postpone to the grain-filling stage. 展开更多
关键词 modified fertilization management summer maize YIELD nitrogen use efficiency
下载PDF
Integrated agronomic practice increases maize grain yield and nitrogen use efficiency under various soil fertility conditions 被引量:6
12
作者 Baoyuan Zhou Xuefang Sun +4 位作者 Dan Wang Zaisong Ding Congfeng Li Wei Ma Ming Zhao 《The Crop Journal》 SCIE CAS CSCD 2019年第4期527-538,共12页
Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency... Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency (NUE);however, the physiological processes associated with gains in yield potential obtained from IAP, particularly the different under various soil fertility conditions, remain poorly understood. An IAP strategy including optimal planting density, split fertilizer application, and subsoiling tillage was evaluated over two growing seasons to determine whether the effects of IAP on maize yield and NUE differ under different levels of soil fertility. Compared to farmers' practices (FP), IAP increased maize grain yield in 2013 and 2014 by 25% and 28%, respectively, in low soil fertility (LSF) fields and by 36% and 37%, respectively, in high soil fertility (HSF) fields. The large yield gap was attributed mainly to greater dry matter (DM) and N accumulation with IAP than with FP owing to increased leaf area index (LAI) and DM accumulation rate, which were promoted by greater soil mineral N content (Nmin) and root length. Post-silking DM and N accumulation were also greater with IAP than with FP under HSF conditions, accounting for 60% and 43%, respectively, of total biomass and N accumulation;however, no significant differences were found for post-silking DM and N accumulation between IAP and FP under LSF conditions. Thus, the increase in grain yield with IAP was greater under HSF than under LSF. Because of greater grain yield and N uptake, IAP significantly increased N partial factor productivity, agronomic N efficiency, N recovery efficiency, and physiological efficiency of applied N compared to FP, particularly in the HSF fields. These results indicate that considerable further increases in yield and NUE can be obtained by increasing effective soil N content and maize root length to promote post-silking N and DM accumulation in maize planted at high plant density, especially in fields with low soil fertility. 展开更多
关键词 Summer MAIZE INTEGRATED AGRONOMIC PRACTICE Soil fertility Grain yield nitrogen use efficiency
下载PDF
Effects of Combined Organic-inorganic Fertilization on Quality and Water Use Efficiency of Spring Maize under Equal Nitrogen Fertilization 被引量:2
13
作者 Defeng WU 《Asian Agricultural Research》 2020年第5期42-46,共5页
The experiment was conducted in the abandoned land of Liangjia Village,Huayin City,Shaanxi Province from April to September 2019.The experimental crop was spring maize.A total of six treatments were set up in a random... The experiment was conducted in the abandoned land of Liangjia Village,Huayin City,Shaanxi Province from April to September 2019.The experimental crop was spring maize.A total of six treatments were set up in a randomized block design.The moisture content of the top 0-60 cm soil was determined regularly,and the yield and quality indices of maize at maturity were checked.The results show that:(i)combined organic-inorganic fertilization increased the yield of spring maize by 3%-8%.(ii)Compared with CK,fertilization treatments significantly improved the water use efficiency of spring maize,with an increase of 59.2%.The average water use efficiency of three combined organic-inorganic fertilization treatments was 27.81 kg/(ha·mm).Compared with CON,combined application of organic and inorganic fertilizers significantly improved the water use efficiency of spring maize,with an increase of 12.5%.(iii)The combined application of organic and inorganic fertilizers increased the moisture,total starch,crude protein and crude fat contents,and reduced crude fiber content of maize kernels.However,with the increase of the proportion of organic fertilizer,the crude protein content of maize kernels decreased.(iv)Yield of spring maize showed a significant parabolic relationship with soil water consumption.In summary,70%inorganic fertilizer+30%organic fertilizer is a scientific and reasonable way of fertilization. 展开更多
关键词 Equal nitrogen fertilization Combined organic-inorganic fertilization MAIZE QUALITY Water use efficiency
下载PDF
Yields and Nitrogen Use Efficiencies of Rice (Oryza sativa) at Different Sites Using Different Nitrogen Fertilizer Application Rates and Controlled-release Urea to Conventional Urea Ratios
14
作者 Hong XIONG Lin ZHANG +5 位作者 Yongchuan ZHU Xiaoyi GUO Peng JIANG Mao LIU Xingbin ZHOU Fuxian XU 《Agricultural Biotechnology》 CAS 2018年第3期149-157,206,共10页
Rice yields and nitrogen use efficiencies were studied at five sites in southwest China using two nitrogen fertilization rates and five controlled-release urea( CRU) to ordinary urea( U) ratios. The fertilizer tre... Rice yields and nitrogen use efficiencies were studied at five sites in southwest China using two nitrogen fertilization rates and five controlled-release urea( CRU) to ordinary urea( U) ratios. The fertilizer treatments significantly increased rice yields compared with the control( no nitrogen added) yields to different degrees at different sites. Applying CRU and U increased the rice yield more than adding the same amount of nitrogen as U only. Higher increasing production rate were found using a nitrogen application rate of 105 kg/hm2 than 150 kg/hm2. A 70∶ 30 CRU∶ U ratio increased the yield more than other four ratios. Nitrogen use efficiency was 21. 9% higher using a nitrogen application rate of 105 kg/hm^2 than 150 kg/hm^2,and 46. 6%,38. 1%,34. 7%,and 22. 2% higher than when only U was applied when CRU∶ U ratios of 70 ∶ 30,50 ∶ 50,100 ∶ 0,and 30 ∶ 70,respectively,were used. A 70 ∶ 30 CRU ∶ U ratio gave the highest economic output( yuan/hm^2). Applying both CRU and U gave an output 3 078. 87 yuan/hm^2 higher at a nitrogen application rate of 150 kg/hm^2 than at a nitrogen application rate of 105 kg/hm^2. Economic output was always higher using both CRU and U than using U only. The highest economic output was given using a 70∶ 30 CRU∶ U ratio.Increasing the amount of nitrogen added decreased the output efficiency( per hm2) because CRU is expensive. Significant relationships were found between the yield increase rate and the proportion of CRU added( regression equation y = 7. 429 x-185. 7,R^2= 0. 663) and between the total rainfall over the whole growth period and the proportion of CRU added( y =-0. 087 1 x + 112. 29,R^2= 0. 687 9). These regression equations can be used to determine the appropriate proportion of CRU that should be added at a site,depending on the rainfall and target rice yield. 展开更多
关键词 Ecological conditions Fertility CRU: U Yield nitrogen use efficiency Output efficiency
下载PDF
Effect of Continuous Application of Controlled Release Nitrogen Fertilizer in Various Types of Soil in Dong-Ting Lake Region under Double Rice Cropping System
15
作者 鲁艳红 廖育林 +3 位作者 聂军 谢坚 杨曾平 戴平安 《Agricultural Science & Technology》 CAS 2012年第2期351-356,379,共7页
[Objective] This study aimed to explore the effects of continuous application of controlled release nitrogen fertilizer under double rice cropping system. [Method] By modeling three types of paddy soils in Dong-Ting L... [Objective] This study aimed to explore the effects of continuous application of controlled release nitrogen fertilizer under double rice cropping system. [Method] By modeling three types of paddy soils in Dong-Ting Lake area, four treatments as no fertilizer (CK), urea, controlled release nitrogen fertilizer (CRNF) and 70% controlled release nitrogen fertilizer (70% CRNF) were designed in the micro-plot trials from 2005 to 2008. [Result] The rice yield in treatment CRNF at N 150 kg/hm2 was increased by 10.3%, 8.0% and 2.4% compared with treatment of urea, in alluvial sandy loamy paddy soil (ALS), purple calcareous clayey paddy soil (PCS), and reddish yellow loamy paddy soil (RYS), respectively; and the yield in treatment of 70% CRNF was increased by 6.1%, 2.6% and -0.8%, respectively. The ranking order of nitrogen uptake amount by plant in early rice and late rice was CRNF 70% CRNF urea CK in all three types of soil. Nitrogen utilization efficiency of CRNF in above three types of soil was 60.7%, 59.6% and 56.3%, increased by 23.8%, 19.4% and 16.3% compared with that in treatment of urea, respectively. Nitrogen utilization efficiency of CRNF in early rice was increased year by year, and was higher than that of 70% CRNF during the whole experiment stage, while that in late rice was increased first and then decreased from the 3rd year. [Conclusion] Continuous application CRNF could alleviate the decreasing of soil nitrogen fertility and organic carbon especially in ALS, increase rice yield and nitrogen utilization efficiency in double-rice cropping system. 展开更多
关键词 Double cropping rice Controlled release nitrogen fertilizer Continuous fertilization YIELD fertilizer use efficiency Soil fertility
下载PDF
Effects of Growing of Different Types of Crops on Constitution of Soil Available Nitrogen and Conversion and Utilization of Nitrogen Fertilizer
16
作者 曾科 杨兰芳 +2 位作者 于婧 李彬波 汪正祥 《Agricultural Science & Technology》 CAS 2017年第6期1067-1071,1075,共6页
The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined... The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined, so as to provide techni- cal guidance for reasonable use and improving use efficiency of nitrogen fertilizer for different types of crops. Compared with the control with nitrogen but unplanted crop, growing soybean, cotton, maize, sorghum significantly decreased the soil available N contents by 53. 48%, 51.54%, 33.10%, 55.03%,and influenced the constitution of soil available N. Thereinto, growing soybean, cotton, maize and sorghum significantly decreased soil inorganic N contents by 85.41%, 83.09%, 70.89% and 83.35%,but increased soil hydrolysable organic N contents by 1.41, 1.53, 2.11 and 1.28 times, respectively; growing soybean, cotton, maize and sorghum significantly decreased the rate of soil inorganic N to available N by 68.61%, 65.09%, 56.47% and 63.00%, but increased the rate of soil hydrolysable organic N to available N by 4.18, 4.21, 3.66 and 4.08 times, respectively. Compared with the control, growing soybean, cotton, maize and sorghum significantly increased the transform rate of ammonium nitrogen fertilizer by 93.66%, 38.19%, 32.58% and 38.31% respectively, and growing soybean treatment had the highest increasing range; the nitrification rates of ammo- nium nitrogen fertilizer of growing soybean, cotton, maize and sorghum treatments were negative values, and growing soybean treatment had the highest decreasing amplitude. The ammonium nitrogen fertilizer use efficiency of growing soybean, cot- ton, maize and sorghum treatments were 52.01%, 28.31%, 24.16% and 28.40% re- spectively and growing soybean treatment had the highest value. In conclusion, growing crops suppressed the soil nitrification and accelerated the development of soil hydrolysable organic nitrogen by the utilization of soil available nitrogen and the alteration of soil environment, and hence impacted the constitution of soil available nitrogen and the transform and use of ammonium nitrogen applied in soil. Legumi- nous crops had stronger ability of suppressing nitrification, making use of ammonium compared with non-Leguminous crops. 展开更多
关键词 Growing of crops Available nitrogen Ammonium nitrogen Nitrate nitro-gen Hydrolysable organic nitrogen nitrogen fertilizer use efficiency
下载PDF
Recent Advances on the Technologies to Increase Fertilizer Use Efficiency 被引量:35
17
作者 YAN Xiang JIN Ji-yun +1 位作者 HE Ping LIANG Ming-zao 《Agricultural Sciences in China》 CAS CSCD 2008年第4期469-479,共11页
To increase fertilizer use efficiency (FUE) and to minimize its negative impact on environment have been the focal points in the world for a long time. It is very important to increase FUE in China for its relativel... To increase fertilizer use efficiency (FUE) and to minimize its negative impact on environment have been the focal points in the world for a long time. It is very important to increase FUE in China for its relatively low FUE and serious losses of nutrients. Recent advances of the technologies to increase FUE are reviewed in this article. These include site-specific and real-time nitrogen management, non-destructive quick test of the nitrogen status of plants, new types of slow release and controlled release fertilizers, site-specific nutrient management, and use of urease inhibitor and nitrification inhibitor to decrease nitrogen losses. Future outlook in technologies related to FUE improvement is also discussed. 展开更多
关键词 fertilizer use efficiency site-specific/real-time nitrogen management slowly release/controlled release fertilizer site specific nutrient management urease/nitrification inhibitor
下载PDF
Effect of Nitrogen Fertilizer on Herbivores and Its Stimulation to Major Insect Pests in Rice 被引量:15
18
作者 LU Zhong-xian YU Xiao-ping +1 位作者 Kong-luen HEONG HU Cui 《Rice science》 SCIE 2007年第1期56-66,共11页
Nitrogen is one of the most important factors in development of herbivore populations. The application of nitrogen fertilizer in plants can normally increase herbivore feeding preference, food consumption, survival, g... Nitrogen is one of the most important factors in development of herbivore populations. The application of nitrogen fertilizer in plants can normally increase herbivore feeding preference, food consumption, survival, growth, reproduction, and population density, except few examples that nitrogen fertilizer reduces the herbivore performances. In most of the rice growing areas in Asia, the great increases in populations of major insect pests of rice, including planthoppers (Nilaparvata lugens and Sogatella furcifera), leaffolder ( Cnaphalocrocis rnedinalis), and stem borers (Scirpophaga incertulas, Chilo suppressalis, S. innotata, C. polychrysus and Sesarnia inferens) were closely related to the long-term excessive application of nitrogen fertilizers. The optimal regime of nitrogen fertilizer in irrigated paddy fields is proposed to improve the fertilizer-nitrogen use efficiency and reduce the environmental pollution. 展开更多
关键词 nitrogen fertilizer HERBIVORE insect pests RICE fertilizer-nitrogen use efficiency
下载PDF
Comparative effects of nitrogen application on growth and nitrogen use in a winter wheat/summer maize rotation system 被引量:8
19
作者 YIN Min-hua LI Yuan-nong XU Yuan-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第9期2062-2072,共11页
The application of fertilizer in agricultural production has become universally common for achieving high crop yields and economic benefits, but it has potential impacts on food safety, energy crisis and environmental... The application of fertilizer in agricultural production has become universally common for achieving high crop yields and economic benefits, but it has potential impacts on food safety, energy crisis and environmental pollution. Optimal management of fertilization is thus necessary for maintaining sustainable agriculture. Two-year(2013–2015) field experiment was conducted, in Yangling(108°24′E, 34°20′N, and 521 m a.s.l.), Shaanxi Province, China, to explore the effects of different nitrogen(N) applications on biomass accumulation, crop N uptake, nitrate N(NO_3~–-N) distribution, yield, and N use with a winter wheat/summer maize rotation system. The N applications consisted of conventional urea(U)(at 80(U80), 160(U160), and 240(U240) kg N ha^(–1); 40% applied as a basal fertilizer and 60% top-dressed at jointing stage) and controlled-release urea(CRU)(at 60(C60), 120(C120), 180(C180), and 240(C240) kg N ha~(^(–1)); all applied as a basal fertilizer) with no N application as a control(CK). The continuous release of N from CRU matched well with the N demands of crop throughout entire growing stages. Soil NO_3~–-N content varied less and peaked shallower in CRU than that in urea treatments. The differences, however, were smaller in winter wheat than that in summer maize seasons. The average yield of summer maize was the highest in C120 in CRU treatments and in U160 in urea treatments, and apparent N use efficiency(NUE) and N agronomic efficiency(NAE) were higher in C120 than in U160 by averages of 22.67 and 41.91%, respectively. The average yield of winter wheat was the highest in C180 in CRU treatments and in U240 in urea treatments with C180 increasing NUE and NAE by averages of 14.89 and 35.62% over U240, respectively. The annual yields under the two N fertilizers were the highest in C120 and U160. The results suggested that CRU as a basal fertilizer once could be a promising alternative of urea as split application in semiarid areas. 展开更多
关键词 controlled-release urea nitrogen availability soil fertility nitrogen use efficiency soil productivity
下载PDF
Effects of Postponing N Application on Metabolism,Absorption and Utilization of Nitrogen of Summer Maize in SuperHigh Yield Region 被引量:3
20
作者 王宜伦 王群 +3 位作者 韩丹 任丽 谭金芳 李潮海 《Agricultural Science & Technology》 CAS 2013年第1期131-134,185,共5页
[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a sup... [Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a super-high yielded region of summer maize, field experiment was conducted to research effects of N fertilizer postponing on key enzymes of N metabolism, yield of maize and N fertilizer use. [Result] After application of N fertilizer was postponed, NR, SPS and GS activities of ear-leaf of summer maize increased by 11.99%-34.87%, 8.25%-10.64% and 10.00%- 16.81% on the 28^th d of silking; content of soluble sugar in leaves enhanced signifi- cantly and accumulated nitrogen increased by 5.00%-9.74% in mature stage. The postponing fertilization of "30% of fertilizer in seedling stage+30% of fertilizer in flare- opening stage+40% of fertilizer in silking stage meets N demands of summer maize in late growth period. Compared with conventional fertilization, the maize yield, agro- nomic efficiency and use of N fertilizer all improved by 5.05%, 1.75 kg/kg and 6.87%, respectively, after application postponed. [Conclusion] Application postponing of N fertilizer maintains activity of NR, GS and SPS higher and coordinates metabolism of C and N in late growth period, to further improve yield of maize. 展开更多
关键词 Summer maize Super high yield Application postponing of N fertilizer nitrogen metabolism use efficiency of N fertilizer
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部