期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Design of a Graphical User Environment for Numerical Simulation of Powder Forming Processes
1
作者 A R Khoei S Keshavarz 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期-,共2页
As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas e... As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental 展开更多
关键词 The Design of a Graphical User Environment for Numerical Simulation of powder forming Processes
下载PDF
Microstructure evolution of laser solid forming of Ti-Al-V ternary system alloys from blended elemental powders 被引量:4
2
作者 谭华 张凤英 +2 位作者 陈静 林鑫 黄卫东 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第5期52-55,共4页
Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorpor... Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorporating columnar to equiaxed transition (CET) mechanism during solidification. The morphology of prior β grains of LSF Ti-6Al-yV changes from columnar to equiaxed grains with increasing element V content from 4 to 20 wt.-%. This agrees well with CET theoretical prediction. Likewise, the grain morphology of LSF Ti-xAl-2V from blended elemental powders changes from large columnar to small equiaxed with increasing Al content from 2 to 11 wt.-%. The macro-morphologies of LSF Ti-8Al-2V and Ti-11Al-2V from blended elemental powders do not agree with CET predictions. This is caused by the increased disturbance effects of mixing enthalpy with increasing Al content, generated in the alloying process of Ti, Al, and V in the molten pool. 展开更多
关键词 Ti Al Microstructure evolution of laser solid forming of Ti-Al-V ternary system alloys from blended elemental powders
原文传递
An update on electrostatic powder coating for pharmaceuticals 被引量:4
3
作者 Qingliang Yang Yingliang Ma +2 位作者 Jesse Zhu Kwok Chow Kaiqi Shi 《Particuology》 SCIE EI CAS CSCD 2017年第2期1-7,共7页
Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigmen... Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigments, and other excipients, are directly sprayed onto the surface of the solid dosage forms through an electrostatic gun without using any organic solvent or water. The deposited coating powders are further cured to form a coating film. Electrostatic powder coating technology has many advantages compared to other pharmaceutical coating methods. It can eliminate the limitations caused by the organic solvent in solvent coating such as environmental issues and health problems. And electrostatic powder coating technology also surpasses aqueous coating due to its shorter processing time and less energy consumption, leading to a lower overall cost. Furthermore, the utilization of electrical attraction can promote the movement of coating powders towards the substrate, leading to an enhanced coating powder adhesion and coating efficiency, which make it more promising compared to other dry coating technologies. The objective of this review is to summarize the coating principles, apparatus, and formulations of different electrostatic powder coating technologies, giving their advantages and limitations and also analyzing the future application in the industry for each technology 展开更多
关键词 Electrostatic powder coating Solid dosage forms Plasticizers powder adhesion Film formation Curing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部