A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples w...A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples were compacted by the technique. Scanning electron microscopy (SEM) and a computer controlled universal testing machine were used to investigate the morphologies and the mechanical properties of samples, respectively. The relationships among the impact velocity, the green density, the sintered density, the bending strength and the tensile strength were discussed, The results show that with increasing impact velocity, the green density and the bending strength increase gradually, so the sintered density does. In addition, the tensile strength of sintered material is improved continuously with the sintered density enhancing. In the study, the sintered density of 7.545 g/cm^3 and the tensile strength of 190 MPa are achieved at the optimal impact velocity of 9.8 m/s.展开更多
The main aim of this paper is to investigate the properties of Cu-TaC electrodes produced by Powder Metallurgy (PM) method. The design of Experiment (DOE) method was used to plan the investigation. Two different c...The main aim of this paper is to investigate the properties of Cu-TaC electrodes produced by Powder Metallurgy (PM) method. The design of Experiment (DOE) method was used to plan the investigation. Two different compositions of the powders (Cu-TaC with 30 and 55 % wt TaC) were used. The major properties which determine suitability of electrodes for Electro Discharge Machining (EDM) are electrical conductivity, therrnal conductivity and to some extent density. These properties were measured for the green compacted electrodes, analyzed and compared with their sintered counterparts. This is the initial stage to determine the suitability or otherwise of the compacted electrodes. The results showed that the compacted electrodes in green form can be suitable for EDM, since the electrical conductivities are very high (94.96-189.92Ω^-1m^-1). The thermal conductivity is good (29.70-33.20W/m K). The density ranges between 6.13 and 9.80 g/cm3. The sintered electrodes were found to be unsuitable at the specified conditions, because they became non-conductive electrically after sintering. Current efforts are geared towards improving these properties for the sintered ones and also determining their optimum levels.展开更多
The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The...The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range.展开更多
High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density great...High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.展开更多
Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness ...Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness and relative density of compacts were investigated.The experimental results show that the relative density,hardness and compressive strength of compacted specimens increase with increasing voltage.In addition,the relative density and compressive strength of compacted specimens increase with the augmentation of capacitance in the range investigated.The relative density increases,the hardness firstly increases and then tends to be a fixed value;and the compressive strength firstly increases and then decreases from one to five times compaction.Both values of the hardness and compressive strength reach the maxima of HRA 69.1 and 1 062.31 MPa,at three times compaction,respectively.There are pores in and between particles.展开更多
基金supported by National 973 Program (No.2006CB605207)MOE Program for Changjiang Scholars and Innovative Research Team in Universityof China (No.I2P407)
文摘A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples were compacted by the technique. Scanning electron microscopy (SEM) and a computer controlled universal testing machine were used to investigate the morphologies and the mechanical properties of samples, respectively. The relationships among the impact velocity, the green density, the sintered density, the bending strength and the tensile strength were discussed, The results show that with increasing impact velocity, the green density and the bending strength increase gradually, so the sintered density does. In addition, the tensile strength of sintered material is improved continuously with the sintered density enhancing. In the study, the sintered density of 7.545 g/cm^3 and the tensile strength of 190 MPa are achieved at the optimal impact velocity of 9.8 m/s.
文摘The main aim of this paper is to investigate the properties of Cu-TaC electrodes produced by Powder Metallurgy (PM) method. The design of Experiment (DOE) method was used to plan the investigation. Two different compositions of the powders (Cu-TaC with 30 and 55 % wt TaC) were used. The major properties which determine suitability of electrodes for Electro Discharge Machining (EDM) are electrical conductivity, therrnal conductivity and to some extent density. These properties were measured for the green compacted electrodes, analyzed and compared with their sintered counterparts. This is the initial stage to determine the suitability or otherwise of the compacted electrodes. The results showed that the compacted electrodes in green form can be suitable for EDM, since the electrical conductivities are very high (94.96-189.92Ω^-1m^-1). The thermal conductivity is good (29.70-33.20W/m K). The density ranges between 6.13 and 9.80 g/cm3. The sintered electrodes were found to be unsuitable at the specified conditions, because they became non-conductive electrically after sintering. Current efforts are geared towards improving these properties for the sintered ones and also determining their optimum levels.
文摘The effects of temperature (0-500°C) on the compressive strength,hardness,average relative density,and microstructure of Ti6Al4V powder green compacts prepared by magnetic pulse compaction were investigated.The results show that with increasing heating temperature,the compressive strength first increases and then decreases with the maximum value of 976.74 MPa at 400°C.The average relative density and hardness constantly increase,and their values reach 96.11% and HRA 69.8 at 500°C,respectively.The increase of partial welding is found among the junctions of particles inside the compacts; there is no obvious grain growth inside the compacts within the temperature range.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0700503)the National High Technology Research and Development Program of China (No. 2015AA034201)+2 种基金the Beijing Science and Technology Plan (No. D161100002416001)the National Natural Science Foundation of China (No. 51172018)Kennametal Inc
文摘High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.
文摘Ti6Al4V powder compaction was performed by using magnetic pulse compaction in air at 200℃.Effects of process parameters such as voltage,capacitance,discharge times on the microstructure,compressive strength,hardness and relative density of compacts were investigated.The experimental results show that the relative density,hardness and compressive strength of compacted specimens increase with increasing voltage.In addition,the relative density and compressive strength of compacted specimens increase with the augmentation of capacitance in the range investigated.The relative density increases,the hardness firstly increases and then tends to be a fixed value;and the compressive strength firstly increases and then decreases from one to five times compaction.Both values of the hardness and compressive strength reach the maxima of HRA 69.1 and 1 062.31 MPa,at three times compaction,respectively.There are pores in and between particles.