Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon...Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.展开更多
Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) o...Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR.展开更多
The powdered activated carbon treatment(PACT) process has been widely used in many industrial fields, however,very few PACT processes are built for petrochemical wastewater treatment in China. An industrial PACT unit ...The powdered activated carbon treatment(PACT) process has been widely used in many industrial fields, however,very few PACT processes are built for petrochemical wastewater treatment in China. An industrial PACT unit launched in a petrochemical plant was introduced and evaluated from both the practice and mechanism study. Practically, the PACT process showed excellent capability in pollutants removal, shock resistance, toxicity tolerance, and the COD and ammoniumN in effluent of PACT unit assisted by PAC was equal to 15.5 mg/L and 0.7 mg/L lower than that without PAC addition,respectively. The wet oxidation regeneration unit was quite efficient in supplying regenerated PAC, and, however, the hard calcium sulphate scale and the high pollutant concentration solution needed to be carefully controlled. Moreover, although the carbon balance showed that the adsorption capability of regenerated PAC was negligible, the biological tests proved that the regenerated PAC increased microbe activity up to 17% more than pure activated sludge system, which was almost compatible with the fresh activated carbon.展开更多
Microcystins(MCs) are cyclic hepatotoxic peptides produced by the bloom-forming cyanobacterium Microcystis and present a public health hazard to humans and livestock. The removal of MCs from contaminated water with po...Microcystins(MCs) are cyclic hepatotoxic peptides produced by the bloom-forming cyanobacterium Microcystis and present a public health hazard to humans and livestock. The removal of MCs from contaminated water with powdered activated carbon(PAC) has been employed as a simple and economic treatment strategy. In this study, PAC-Fe(Ⅲ) was prepared and utilized for the fast and efficient removal of MCs from water. PAC-Fe(Ⅲ) exhibited superior microcystin-LR(MC-LR) removal capacity and efficiency compared to the unmodified PAC. The MC-LR removal efficiency of PAC-Fe(Ⅲ) increased with decreasing p H within the pH range of 4.3 to 9.6. PAC-Fe(Ⅲ) could be reused for 3 times by methanol elution while the MC-LR removal efficiency was still over 70 percent. The removal efficiency was positively correlated to the ionic strength of water and negatively correlated to alkalinity. Natural organic matter(NOM) such as humic acid(HA) and salicylic acid(SA) generated low interference with MC-LR adsorption by PAC-Fe(Ⅲ). The complexation reaction between Fe^(3+) in PAC-Fe(Ⅲ) and the functional groups of MCLR was suggested as the key mechanism of MC-LR removal by PAC-Fe(Ⅲ). The results suggest that Femodified PAC is a promising material for the treatment of MC-contaminated waters.展开更多
The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectiv...The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum.展开更多
[Objective] The study aimed to discover the effects of powder active carbon( PAC) /flotation /micro-flocculation /ultrafiltration combined process on the treatment of reservoir water. [Method]Taken the water from a ...[Objective] The study aimed to discover the effects of powder active carbon( PAC) /flotation /micro-flocculation /ultrafiltration combined process on the treatment of reservoir water. [Method]Taken the water from a mountainous reservoir for the initial samples,the parameters such as turbidity,COD Mn,chlorophyll-a and methylisobormeol( MIB) of water samples were monitored before and after treated with combined processes of micro-flocculation /ultrafiltration, flotation /micro-flocculation /ultrafiltration, PAC /flotation /micro-flocculation /ultrafiltration. [Result] The results showed that the removal rates of turbidity of water samples by the above three processes were 97. 5%,98. 0% and 98. 6%,respectively. The removal rates of COD Mn were 30. 9%,35. 0% and 52. 0%. The removal rates of chlorophyll-a were 80. 6%,91. 0% and 99. 0%. The removal rates of MIB were 17. 0%,34. 2% and 97. 0%. [Conclusion]The PAC /flotation /micro-flocculation ultrafiltration combined process can be flexibly combined based on the characteristics of algae and odor in water,and is suitable for water plant construction or reconstruction.展开更多
The adsorption characteristics of the powdered activated carbon on four kinds of pesticides ( dichlorvos, chlorothalonil, lindane and chlorphyrifos) were studied, and the influential factors of adsorption effect wer...The adsorption characteristics of the powdered activated carbon on four kinds of pesticides ( dichlorvos, chlorothalonil, lindane and chlorphyrifos) were studied, and the influential factors of adsorption effect were discussed. Results showed that the powdered activated carbon could effectively remove the above four kinds of pesticides. It was rapid adsorption period before 30 min, and removal rate has reached 90%. Adsorption kinetics of the powdered activated carbon on pesticides corresponded with quasi-two-level kinetic equation, and both Freundlich and Langmuir adsorption isotherms could simulate the adsorption process of the activated carbon on pesticide well. Competitive adsorption between small-molecule organics in the water diverting from Yellow River and Desticides on microDore of the activated carbon would occur.展开更多
The use of <em>in situ</em> technologies for the treatment of groundwater containing various compounds of concern are widely accepted. These technologies include chemical reduction, chemical oxidation, ana...The use of <em>in situ</em> technologies for the treatment of groundwater containing various compounds of concern are widely accepted. These technologies include chemical reduction, chemical oxidation, anaerobic and aerobic bioremediation, and adsorption, among others. One requirement for the successful application of these technologies is the delivery of the remedial reagent(s) to the compounds of concern. A rapidly evolving <em>in situ</em> technology is the injection of adsorptive media such as activated carbon and ion-exchange resin including powdered or colloidal activated carbon. Activated carbon has a long-demonstrated history of effectiveness for the removal of various organic and inorganic compounds in above ground water treatment systems. However, due to constraints related to the particle size and physical properties of the activated carbon, the <em>in situ</em> application of activated carbon has been limited. Recent developments in the manufacturing of activated carbon have created a smaller particle size allowing activated carbon to be applied <em>in situ</em>. To evaluate if powdered and colloidal activated carbon can be effectively distributed in aquifers, the two types of carbon were injected using direct push technology adjacent to each other at four sites with varying geology. Evaluation of distribution was completed by sampling the aquifer prior to and post-injection for total organic carbon. The results of the studies indicated that both forms of activated carbon were effectively delivered to the targeted injection zones with both carbon types being detected at least seven meters away from the point of injection. The colloidal form of the activated carbon showed good distribution throughout the four targeted zones of injection with 93 percent of the samples collected having colloidal activated carbon present within them whereas the powdered activated carbon cells were more susceptible to aquifer heterogeneity with only 67 percent of the samples collected having activated carbon present. Preferential accumulation of activated carbon was observed in high horizontal hydraulic conductivity seams, especially within the powdered activated carbon cells. These results suggested that the powdered form of activated carbon was more suspectable at the four sites to heterogeneity within the aquifer than the colloidal form of activated carbon. Sampling of monitoring well screens installed prior to the injection of the two forms of activated carbon showed preferential accumulation of powdered activated carbon within the sand pack, which could result in sampling bias.展开更多
In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited on...In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incorporation, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacnticlng the permeation tlux ot the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the enhanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m^-2·h^-1. The present study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment.展开更多
The modification of activated carbon with persimmon tannin and its application for the removal of Pb(II) ions were carried out by batch method. The effects of solution pH, contact time, temperature and initial conce...The modification of activated carbon with persimmon tannin and its application for the removal of Pb(II) ions were carried out by batch method. The effects of solution pH, contact time, temperature and initial concentration on the immobilization of persimmon tannin were studied. The experimental results showed that the experimental data of persimmon tannin and Pb(II) fitted better by Langrnuir adsorption isotherm model and pseudo-second order model. The adsorption capacities of adsorbents for persimmon tannin and Pb(II) were calculated from the Langmuir isotherm model, and found to be 42.97 and 12.40 mg/g at optimum pH, respectively. It was noted that the adsorbent exhibited the best adsorption property for Pb(lI) when 1.0 g activated carbon was modified by 17.32 mg persimmon tannin. The modified activated carbon is more effective than the plain activated carbon, and it is expected to be an economic and effective adsorbent for the disposal of wastewater containing Pb(II) ions.展开更多
Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide(KOH), as an effective activation agent, was reported to be effective in activ...Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide(KOH), as an effective activation agent, was reported to be effective in activating coke powder. However, the microstructures development in the coke powder and its mechanisms when KOH was applied were still unclear. In this study, effects of KOH on the microstructure activation of coke powder were investigated using the surface area and pore structure analyzer, scanning electron microscope(SEM) and thermogravimetry-differential scanning calorimetry-mass spectrometry(TG-DSC-MS), etc. Results revealed that the addition KOH at its lower ratio(mass ratios of KOH and coke powder in a range of 0.5 and 1) decreased the specific surface area and average lateral sizes, but sharply increased of the specific surface area to 132 m^2·g^-1 and 355 m^2·g^-1 and decreased of the space size of aromatic crystallites upon the further increase of the KOH addition amounts(ratios of KOH and coke powder in a range of 3 and 7), generating a number of new micropores and mesopores. The mechanisms study implied surface reactions between KOH and aliphatic hydrocarbon side chain and other carbon functional groups of the coke powder to destruct aromatic crystallites in one dimension and broaden pores at lower KOH addition. In the activation process, KOH was decomposed to be more active components, which can be rapidly destruct the aromatic layers in spatial scope to form developed porous carbon structures within coke powder at higher KOH addition.展开更多
Refined carbon(RC) derived from coal fly ash(CFA) as well as powdered activated carbon(PAC) was investigated as adsorbent to remove residual amine collector HAY from aqueous solution.The RC and PAC were characterized ...Refined carbon(RC) derived from coal fly ash(CFA) as well as powdered activated carbon(PAC) was investigated as adsorbent to remove residual amine collector HAY from aqueous solution.The RC and PAC were characterized by scanning electron microscopy(SEM),surface area measurement,Zeta potential measurement and Fourier transform infrared(FTIR) spectroscopy.The effect factors and mechanisms of HAY adsorption onto RC and PAC were studied in detail.The results show that the experimental kinetic data agree well with the pseudo second-order equation,and the Langmuir isotherm model is found to be more appropriate to explicate the experimental equilibrium isotherm results than the Freundlich model.The adsorption capacities of PAC and RC increase with pH.It is found that alkaline condition is conducive to the adsorption of HAY onto PAC and RC and the adsorption efficiency of RC is close to PAC at pH near 11.Zeta potential variation of adsorbents suggests that HAY generates electrostatic adsorption onto RC and PAC.FTIR analysis shows that the adsorption is dominantly of a physical process.The Box-Behnken design optimization conditions of process are RC 1 g/L,pH 11,temperature 302 K and initial HAY concentration 100 mg/L.Under these conditions,the measured adsorption ratio and adsorption capacity are 87.91%and 87.91 mg/g,respectively.Thus,the RC is considered to be a potential adsorbent for the removal of residual amine from aqueous solution.展开更多
Caproate, produced by microbial chain elongation process, is potential to replace the diversified fossilbased products, contributing to carbon neutrality. However, its production performance is far from industrial app...Caproate, produced by microbial chain elongation process, is potential to replace the diversified fossilbased products, contributing to carbon neutrality. However, its production performance is far from industrial application, so the cost-effective enhancement measures are highly needed. This study confirmed powdered activated carbon(PAC) has a significant effect on enhancing caproate production performance.The production, yield, and selectivity of caproate were improved by more than 1-fold by the optimized PAC dosage of 15 g/L, comparing with control. Mechanism investigation from a new visual angle showed that PAC accelerated ethanol oxidation to generate acetyl-Co A, and simultaneously boosted the efficiency of reverse β oxidation(RBO) by promoting the timely reaction of butyrate and acetyl-Co A to synthesis caproate. The addition of PAC also shifted the microbial community by enriching more caproateproducing bacteria but eliminating irrelevant ones. Furthermore, metagenomic analysis revealed that PAC effectively up-regulated the functional genes encoding key enzymes responsible for ethanol oxidation and RBO pathway, which was the root cause for the improved caproate production. This study presented the intrinsic insights into the mechanism of PAC promoting caproate generation, laying a foundation to the scale production of caproate.展开更多
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023 and GJJ181022)。
文摘Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
基金Project supported by the Hi-Tech Research and Development Program(863)of China(No. 2002AA601310).
文摘Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR.
基金financially supported by SINOPEC (CLY15043)CRICC of ChemChina (2017-KZY03 and 2018-KZ-Y04)
文摘The powdered activated carbon treatment(PACT) process has been widely used in many industrial fields, however,very few PACT processes are built for petrochemical wastewater treatment in China. An industrial PACT unit launched in a petrochemical plant was introduced and evaluated from both the practice and mechanism study. Practically, the PACT process showed excellent capability in pollutants removal, shock resistance, toxicity tolerance, and the COD and ammoniumN in effluent of PACT unit assisted by PAC was equal to 15.5 mg/L and 0.7 mg/L lower than that without PAC addition,respectively. The wet oxidation regeneration unit was quite efficient in supplying regenerated PAC, and, however, the hard calcium sulphate scale and the high pollutant concentration solution needed to be carefully controlled. Moreover, although the carbon balance showed that the adsorption capability of regenerated PAC was negligible, the biological tests proved that the regenerated PAC increased microbe activity up to 17% more than pure activated sludge system, which was almost compatible with the fresh activated carbon.
基金Supported by the National Natural Science Foundation of China(Nos.31660138,31400405)the Jiangxi Water Science and Technology Fund(Nos.TG201501,KT201602)the Science and Technology Project from Ministry of Water Resources,China(Nos.ZXKT201508,SKY201503)
文摘Microcystins(MCs) are cyclic hepatotoxic peptides produced by the bloom-forming cyanobacterium Microcystis and present a public health hazard to humans and livestock. The removal of MCs from contaminated water with powdered activated carbon(PAC) has been employed as a simple and economic treatment strategy. In this study, PAC-Fe(Ⅲ) was prepared and utilized for the fast and efficient removal of MCs from water. PAC-Fe(Ⅲ) exhibited superior microcystin-LR(MC-LR) removal capacity and efficiency compared to the unmodified PAC. The MC-LR removal efficiency of PAC-Fe(Ⅲ) increased with decreasing p H within the pH range of 4.3 to 9.6. PAC-Fe(Ⅲ) could be reused for 3 times by methanol elution while the MC-LR removal efficiency was still over 70 percent. The removal efficiency was positively correlated to the ionic strength of water and negatively correlated to alkalinity. Natural organic matter(NOM) such as humic acid(HA) and salicylic acid(SA) generated low interference with MC-LR adsorption by PAC-Fe(Ⅲ). The complexation reaction between Fe^(3+) in PAC-Fe(Ⅲ) and the functional groups of MCLR was suggested as the key mechanism of MC-LR removal by PAC-Fe(Ⅲ). The results suggest that Femodified PAC is a promising material for the treatment of MC-contaminated waters.
基金the Science Foundation of Shanghai Municipal of Commission of Education (99A44) and a Bilateral Scientific Project between C
文摘The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum.
基金Supported by Water Pollution Control and Treatment National Science and Technology Major Project(2012ZX07404-003)Major Projects of Science and Technology of Jinan City(201201133)
文摘[Objective] The study aimed to discover the effects of powder active carbon( PAC) /flotation /micro-flocculation /ultrafiltration combined process on the treatment of reservoir water. [Method]Taken the water from a mountainous reservoir for the initial samples,the parameters such as turbidity,COD Mn,chlorophyll-a and methylisobormeol( MIB) of water samples were monitored before and after treated with combined processes of micro-flocculation /ultrafiltration, flotation /micro-flocculation /ultrafiltration, PAC /flotation /micro-flocculation /ultrafiltration. [Result] The results showed that the removal rates of turbidity of water samples by the above three processes were 97. 5%,98. 0% and 98. 6%,respectively. The removal rates of COD Mn were 30. 9%,35. 0% and 52. 0%. The removal rates of chlorophyll-a were 80. 6%,91. 0% and 99. 0%. The removal rates of MIB were 17. 0%,34. 2% and 97. 0%. [Conclusion]The PAC /flotation /micro-flocculation ultrafiltration combined process can be flexibly combined based on the characteristics of algae and odor in water,and is suitable for water plant construction or reconstruction.
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment,China(2012ZX07404-003)Taishan Scholar Post Project,China(ts200640025)Jinan Enterprise Innovation Program,China(201201133)
文摘The adsorption characteristics of the powdered activated carbon on four kinds of pesticides ( dichlorvos, chlorothalonil, lindane and chlorphyrifos) were studied, and the influential factors of adsorption effect were discussed. Results showed that the powdered activated carbon could effectively remove the above four kinds of pesticides. It was rapid adsorption period before 30 min, and removal rate has reached 90%. Adsorption kinetics of the powdered activated carbon on pesticides corresponded with quasi-two-level kinetic equation, and both Freundlich and Langmuir adsorption isotherms could simulate the adsorption process of the activated carbon on pesticide well. Competitive adsorption between small-molecule organics in the water diverting from Yellow River and Desticides on microDore of the activated carbon would occur.
文摘The use of <em>in situ</em> technologies for the treatment of groundwater containing various compounds of concern are widely accepted. These technologies include chemical reduction, chemical oxidation, anaerobic and aerobic bioremediation, and adsorption, among others. One requirement for the successful application of these technologies is the delivery of the remedial reagent(s) to the compounds of concern. A rapidly evolving <em>in situ</em> technology is the injection of adsorptive media such as activated carbon and ion-exchange resin including powdered or colloidal activated carbon. Activated carbon has a long-demonstrated history of effectiveness for the removal of various organic and inorganic compounds in above ground water treatment systems. However, due to constraints related to the particle size and physical properties of the activated carbon, the <em>in situ</em> application of activated carbon has been limited. Recent developments in the manufacturing of activated carbon have created a smaller particle size allowing activated carbon to be applied <em>in situ</em>. To evaluate if powdered and colloidal activated carbon can be effectively distributed in aquifers, the two types of carbon were injected using direct push technology adjacent to each other at four sites with varying geology. Evaluation of distribution was completed by sampling the aquifer prior to and post-injection for total organic carbon. The results of the studies indicated that both forms of activated carbon were effectively delivered to the targeted injection zones with both carbon types being detected at least seven meters away from the point of injection. The colloidal form of the activated carbon showed good distribution throughout the four targeted zones of injection with 93 percent of the samples collected having colloidal activated carbon present within them whereas the powdered activated carbon cells were more susceptible to aquifer heterogeneity with only 67 percent of the samples collected having activated carbon present. Preferential accumulation of activated carbon was observed in high horizontal hydraulic conductivity seams, especially within the powdered activated carbon cells. These results suggested that the powdered form of activated carbon was more suspectable at the four sites to heterogeneity within the aquifer than the colloidal form of activated carbon. Sampling of monitoring well screens installed prior to the injection of the two forms of activated carbon showed preferential accumulation of powdered activated carbon within the sand pack, which could result in sampling bias.
基金Supported by Drug Separation and Purification Project in Programme for Development of Novel Drug (2009ZX09301-008)the Program of Introducing Talents of Discipline to Universities (B06006)State Key Laboratory of Precision Measuring Technology and Instruments (Tianjin University)
文摘In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incorporation, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacnticlng the permeation tlux ot the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the enhanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m^-2·h^-1. The present study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment.
基金Funded by the National Military-funded Projects of China(No.9140A12011108QT6912)
文摘The modification of activated carbon with persimmon tannin and its application for the removal of Pb(II) ions were carried out by batch method. The effects of solution pH, contact time, temperature and initial concentration on the immobilization of persimmon tannin were studied. The experimental results showed that the experimental data of persimmon tannin and Pb(II) fitted better by Langrnuir adsorption isotherm model and pseudo-second order model. The adsorption capacities of adsorbents for persimmon tannin and Pb(II) were calculated from the Langmuir isotherm model, and found to be 42.97 and 12.40 mg/g at optimum pH, respectively. It was noted that the adsorbent exhibited the best adsorption property for Pb(lI) when 1.0 g activated carbon was modified by 17.32 mg persimmon tannin. The modified activated carbon is more effective than the plain activated carbon, and it is expected to be an economic and effective adsorbent for the disposal of wastewater containing Pb(II) ions.
基金Supported by the National Key R&D Plan(2016YFE0131100,2017YFB0603101)the Program for Sanjin Scholars of Shanxi Provincethe Talent Training Program of Shanxi Joint Postgraduate Training Base(2016JD07).
文摘Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide(KOH), as an effective activation agent, was reported to be effective in activating coke powder. However, the microstructures development in the coke powder and its mechanisms when KOH was applied were still unclear. In this study, effects of KOH on the microstructure activation of coke powder were investigated using the surface area and pore structure analyzer, scanning electron microscope(SEM) and thermogravimetry-differential scanning calorimetry-mass spectrometry(TG-DSC-MS), etc. Results revealed that the addition KOH at its lower ratio(mass ratios of KOH and coke powder in a range of 0.5 and 1) decreased the specific surface area and average lateral sizes, but sharply increased of the specific surface area to 132 m^2·g^-1 and 355 m^2·g^-1 and decreased of the space size of aromatic crystallites upon the further increase of the KOH addition amounts(ratios of KOH and coke powder in a range of 3 and 7), generating a number of new micropores and mesopores. The mechanisms study implied surface reactions between KOH and aliphatic hydrocarbon side chain and other carbon functional groups of the coke powder to destruct aromatic crystallites in one dimension and broaden pores at lower KOH addition. In the activation process, KOH was decomposed to be more active components, which can be rapidly destruct the aromatic layers in spatial scope to form developed porous carbon structures within coke powder at higher KOH addition.
基金Projects(2013BAB07B03,2013BAC15B01)supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of ChinaProject(51264005)supported by the National Natural Science Foundation of China+1 种基金Project(Qiankehejz[2014]2009)supported by the Key Foundation of Science and Technology of Guizhou Province,ChinaProject([2013]019)supported by“125”Major Special Project of Guizhou Province,China
文摘Refined carbon(RC) derived from coal fly ash(CFA) as well as powdered activated carbon(PAC) was investigated as adsorbent to remove residual amine collector HAY from aqueous solution.The RC and PAC were characterized by scanning electron microscopy(SEM),surface area measurement,Zeta potential measurement and Fourier transform infrared(FTIR) spectroscopy.The effect factors and mechanisms of HAY adsorption onto RC and PAC were studied in detail.The results show that the experimental kinetic data agree well with the pseudo second-order equation,and the Langmuir isotherm model is found to be more appropriate to explicate the experimental equilibrium isotherm results than the Freundlich model.The adsorption capacities of PAC and RC increase with pH.It is found that alkaline condition is conducive to the adsorption of HAY onto PAC and RC and the adsorption efficiency of RC is close to PAC at pH near 11.Zeta potential variation of adsorbents suggests that HAY generates electrostatic adsorption onto RC and PAC.FTIR analysis shows that the adsorption is dominantly of a physical process.The Box-Behnken design optimization conditions of process are RC 1 g/L,pH 11,temperature 302 K and initial HAY concentration 100 mg/L.Under these conditions,the measured adsorption ratio and adsorption capacity are 87.91%and 87.91 mg/g,respectively.Thus,the RC is considered to be a potential adsorbent for the removal of residual amine from aqueous solution.
基金supported by the Natural Science Foundation of Sichuan Province (No. 2022NSFSC1042)Fundamental Research Funds for the Central Universities+1 种基金National Natural Science Foundation of China (No. 52000132)supported by the Sichuan Province College Students’ Innovation and Entrepreneurship Training Plan (No. S202210610415)。
文摘Caproate, produced by microbial chain elongation process, is potential to replace the diversified fossilbased products, contributing to carbon neutrality. However, its production performance is far from industrial application, so the cost-effective enhancement measures are highly needed. This study confirmed powdered activated carbon(PAC) has a significant effect on enhancing caproate production performance.The production, yield, and selectivity of caproate were improved by more than 1-fold by the optimized PAC dosage of 15 g/L, comparing with control. Mechanism investigation from a new visual angle showed that PAC accelerated ethanol oxidation to generate acetyl-Co A, and simultaneously boosted the efficiency of reverse β oxidation(RBO) by promoting the timely reaction of butyrate and acetyl-Co A to synthesis caproate. The addition of PAC also shifted the microbial community by enriching more caproateproducing bacteria but eliminating irrelevant ones. Furthermore, metagenomic analysis revealed that PAC effectively up-regulated the functional genes encoding key enzymes responsible for ethanol oxidation and RBO pathway, which was the root cause for the improved caproate production. This study presented the intrinsic insights into the mechanism of PAC promoting caproate generation, laying a foundation to the scale production of caproate.