According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s...According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.展开更多
Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, mini...Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.展开更多
Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves lar...Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment.展开更多
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP se...The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.展开更多
Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this ...Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost.展开更多
Power transformer is one of the most important equipment in the power system.Its operating condition affects the reliability of power supply directly.Therefore,in order to guarantee transformer operation safely and re...Power transformer is one of the most important equipment in the power system.Its operating condition affects the reliability of power supply directly.Therefore,in order to guarantee transformer operation safely and reliably,it is necessary to assess condition of power transformer accurately.Return voltage method based on voltage response measurements is still a new non-intrusive diagnosis method for internal insulation aging of transformer.In this paper the technique and application of return voltage measurement and some results of voltage response measurements of several transformers was introduced.Voltage response measurements were performed on various transformers with different voltage grades,various operating periods,different moisture contents and aging degrees on site.Derived moisture contents from return voltage measurement were compared with the corresponding moisture contents obtained from the analysis of oil samples.Based on on-site experiments and theoretical analysis,the criteria for insulation state of transformer are proposed.Moisture condition of transformer insulation can be determined by using return dominant time constant,and a good correlation between aging degree and the return voltage initial slopes of the aged transformers.Field test performed on several transformers,its interpretation of results are also presented,which proves that return voltage measurements can be used as a reliable tool for evaluating moisture content in transformer insulation.展开更多
The purpose of this study is to establish an intelligent expert system for nuclear power plant emergency response.A new framework of environmental risk management methodology by the concept of pattern recognition was ...The purpose of this study is to establish an intelligent expert system for nuclear power plant emergency response.A new framework of environmental risk management methodology by the concept of pattern recognition was introduced in this paper.A knowledge-based decision support system for emergency response and risk management of nuclear power plant was also discussed.The mathematical pattern relationship of accidental release effects on neighboring area and the corresponding response measures were presented in this paper.With this decision system,the decision maker can specify the procedure and minimize their human error in the decision process.The improvement of risk response and the quality of management system could be upgraded by this system.Besides,the methodology can also be served as a basis for the future development of environmental risk response system design.展开更多
The widespread use of distributed energy sources provides exciting potential for demand-side energy sharing and collective self-consumption schemes.Demand-side energy sharing and collective self-consumption systems ar...The widespread use of distributed energy sources provides exciting potential for demand-side energy sharing and collective self-consumption schemes.Demand-side energy sharing and collective self-consumption systems are committed to coordinating the operation of distributed generation,energy storage,and load demand.Recently,with the development of Internet technology,sharing economy is rapidly penetrating various fields.The application of sharing economy in the energy sector enables more and more end-users to participate in energy transactions.However,the deployment of energy sharing technologies poses many challenges.This paper comprehensively reviews recent developments in demand-side energy sharing and collective self-consumption schemes.The definition and classification of sharing economy are presented,with a focus on the applications in the energy sector:virtual power plants,peer-to-peer energy trading,shared energy storage,and microgrid energy sharing cloud.Challenges and future research directions are thoroughly discussed.展开更多
: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic m...: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic methods to analyze parameter uncertainty. Directly manually dealing with the calculated floor response spectra (FRS) values of deterministic approaches is the first method. The second method is to perform probability statistical analysis of the FRS results on the basis of the Monte Carlo method. The two methods can only reflect the overall effects of the uncertain parameters, and the results cannot be screened for a certain parameter's influence and contribution. In this study, based on the dynamic analyses of the floor response spectra of NPPs, a comprehensive index of the assessed impact for various uncertain parameters is presented and recommended, including the correlation coefficient, the regression slope coefficient and Tornado swing. To compensate for the lack of guidance in the NPP seismic standards, the proposed method can effectively be used to evaluate the contributions of various parameters from the aspects &sensitivity, acuity and statistical swing correlations. Finally, examples are provided to verify the set of indicators from systematic and intuitive perspectives, such as the uncertainty of the impact of the structure parameters and the contribution to the FRS of NPPs. The index is sensitive to different types of parameters, which provides a new technique for evaluating the anti-seismic parameters required for NPPs.展开更多
Research to reliably predict the seismic response of nuclear power stations with a pile-raft foundation is needed to meet the high safety requirements of nuclear power stations.In this study,a scaled superstructure wi...Research to reliably predict the seismic response of nuclear power stations with a pile-raft foundation is needed to meet the high safety requirements of nuclear power stations.In this study,a scaled superstructure with a 4×3 pile-raft foundation,which is constructed in Shanxi kaolin clay,is modelled.Accordingly,the characteristics of seismic response for nuclear power stations with a pile-raft foundation are analyzed using dynamic centrifuge tests.In particular,multiple earthquake motions with different magnitudes and frequency properties are utilized to map the relationship between structural response and properties of earthquake motions.The results show that the seismic response of the soil,raft,and structure are significantly affected by the natural frequency and magnitude of the earthquake motion.The soil surface acceleration is lower than the raft acceleration.The results provide a reliable reference to better understand the seismic response of nuclear power stations.展开更多
With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably...With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost.展开更多
Demand Response(DR)is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting.This research paper presents different DR programs in deregulated environments.The description...Demand Response(DR)is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting.This research paper presents different DR programs in deregulated environments.The description and the classification of DR along with their potential benefits and associated cost components are presented.In addition,most DR measurement indices and their evaluation are also highlighted.Initially,the economic load model incorporated thermal,wind,and energy storage by considering the elasticity market price from its calculated locational marginal pricing(LMP).The various DR programs like direct load control,critical peak pricing,real-time pricing,time of use,and capacity market programs are considered during this study.The effect of demand response in electricity prices is highlighted using a simulated study on IEEE 30 bus system.Simulation is done by the Shuffled Frog Leap Algorithm(SFLA).Comprehensive performance comparison on voltage deviations,losses,and cost with and without considering DR is also presented in this paper.展开更多
The statistical characteristics of strong ground motion specified by response spectrum and power spectral density function are studied using 190 strong-motion records of the Haicheng and Tangshan earthquakes in China ...The statistical characteristics of strong ground motion specified by response spectrum and power spectral density function are studied using 190 strong-motion records of the Haicheng and Tangshan earthquakes in China and 138 earthquakes in the western United States.The response spectrum is normalized by the peak ground acceleration(i.e.,represented as spectral magnification factor),and the power spectral density function is described by the Kanai-Tajimi spectrum.The statistics and dependence of parameters are evaluated,and correlations between the spectral magnification factor or Kanai-Tajimi spectral parameters and the site condition,epicentral distance,or local magnitude are investigated.The statistical characteristics of spectra China and the U.S.A.are compared.Based on the results obtained the values of the statistics on spectral parameters for earthquake engineering applications in China are suggested.展开更多
Integrated energy system optimization scheduling can improve energy efficiency and low carbon economy.This paper studies an electric-gas-heat integrated energy system,including the carbon capture system,energy couplin...Integrated energy system optimization scheduling can improve energy efficiency and low carbon economy.This paper studies an electric-gas-heat integrated energy system,including the carbon capture system,energy coupling equipment,and renewable energy.An energy scheduling strategy based on deep reinforcement learning is proposed to minimize operation cost,carbon emission and enhance the power supply reliability.Firstly,the lowcarbon mathematical model of combined thermal and power unit,carbon capture system and power to gas unit(CCP)is established.Subsequently,we establish a low carbon multi-objective optimization model considering system operation cost,carbon emissions cost,integrated demand response,wind and photovoltaic curtailment,and load shedding costs.Furthermore,considering the intermittency of wind power generation and the flexibility of load demand,the low carbon economic dispatch problem is modeled as a Markov decision process.The twin delayed deep deterministic policy gradient(TD3)algorithm is used to solve the complex scheduling problem.The effectiveness of the proposed method is verified in the simulation case studies.Compared with TD3,SAC,A3C,DDPG and DQN algorithms,the operating cost is reduced by 8.6%,4.3%,6.1%and 8.0%.展开更多
Micro-grid plays a vital role in fulfilling the increasing demand by using distributed renewable energy resources. Demand and response technique can be broadly classified under the setup DR deployed (e.g. ISO’s/RTO’...Micro-grid plays a vital role in fulfilling the increasing demand by using distributed renewable energy resources. Demand and response technique can be broadly classified under the setup DR deployed (e.g. ISO’s/RTO’s). Demand response program can be implemented to improve power system quality, reliability and increasing demand. In modern power industry, strategic player can take more benefit from more emphasized DR study in terms of social benefit (uninterrupted power supply to consumers) and economy. This paper proposes the distributed micro-grid control and implemented control setup implemented demand response algorithm, which provides better power system reliability. This paper presents contingencies control demand and response for micro-grid. The main advantage of implementation of demand and response algorithms in Micro-grids provides reliable power supplies to consumers. The proposed micro-grid TCP/IP setup provides a chance to respond the contingencies to recover the shed to active condition. Micro-grid controller implements demand and response algorithm reasonable for managing the demand of the load and intelligent load scheme in case of blackout.展开更多
As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve t...As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.展开更多
This paper has an objective to show a developed quantitative criterion,based in two mathematical variables that explicit the deviation degree of a normal situation,applying simultaneously data from terminal impedances...This paper has an objective to show a developed quantitative criterion,based in two mathematical variables that explicit the deviation degree of a normal situation,applying simultaneously data from terminal impedances and frequency response.Based in more than 100-measured equipment,of different applications(step-up transformer,transmission transformer,etc.,),for a period of 10 years,the work presents some examples of practical application of this methodology in Brazilian Electrical System.展开更多
The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real...The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real-power is used to Combined with the global properties of the noise-free system, the evolutionary process of the tran- sient PDFs is revealed. The results show that stochastic P-bifurcation occurs when the system parameter varies in the response analysis and the stationary PDF evolves from bimodal to unimodal along the unstable manifold during the bifurcation.展开更多
基金support of the projects Youth Science Foundation of Gansu Province(Source-Grid-Load Multi-Time Interval Optimization Scheduling Method Considering Wind-PV-CSP Combined DC Transmission,No.22JR11RA148)Youth Science Foundation of Lanzhou Jiaotong University(Research on Coordinated Dispatching Control Strategy of High Proportion New Energy Transmission Power System with CSP Power Generation,No.2020011).
文摘According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.
基金supported by China Armament Pre-research Foundation(Grant No. 51318010402)UK Engineering and Physical Science Research Council (EPSRC), and China Scholarship Council (Grant No.2010611054)
文摘Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.
基金jointly supported by Youth Program of National Natural Science Foundation of China(No.51907100)Technical Program of Global Energy Interconnection Group Co.,Ltd(No.1100/2020-75001B)
文摘Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment.
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金Supported by the National Natural Science Foundation of China(No.61201345)the Beijing Key Laboratory of Advanced Information Science and Network Technology(No.XDXX1308)
文摘The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.
基金supported by the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.22IRTSTHN016)the Hubei Natural Science Foundation(No.2021CFB156)the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)(No.JP21K17737).
文摘Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost.
基金Project Supported by Science and Technology Fund of Fujian E-lectric Power Limited Company(NC2006044)Scientific Research Fund of Fujian Education Depart ment(JB06045)
文摘Power transformer is one of the most important equipment in the power system.Its operating condition affects the reliability of power supply directly.Therefore,in order to guarantee transformer operation safely and reliably,it is necessary to assess condition of power transformer accurately.Return voltage method based on voltage response measurements is still a new non-intrusive diagnosis method for internal insulation aging of transformer.In this paper the technique and application of return voltage measurement and some results of voltage response measurements of several transformers was introduced.Voltage response measurements were performed on various transformers with different voltage grades,various operating periods,different moisture contents and aging degrees on site.Derived moisture contents from return voltage measurement were compared with the corresponding moisture contents obtained from the analysis of oil samples.Based on on-site experiments and theoretical analysis,the criteria for insulation state of transformer are proposed.Moisture condition of transformer insulation can be determined by using return dominant time constant,and a good correlation between aging degree and the return voltage initial slopes of the aged transformers.Field test performed on several transformers,its interpretation of results are also presented,which proves that return voltage measurements can be used as a reliable tool for evaluating moisture content in transformer insulation.
基金Supported by Jinwen University of Science and Technology
文摘The purpose of this study is to establish an intelligent expert system for nuclear power plant emergency response.A new framework of environmental risk management methodology by the concept of pattern recognition was introduced in this paper.A knowledge-based decision support system for emergency response and risk management of nuclear power plant was also discussed.The mathematical pattern relationship of accidental release effects on neighboring area and the corresponding response measures were presented in this paper.With this decision system,the decision maker can specify the procedure and minimize their human error in the decision process.The improvement of risk response and the quality of management system could be upgraded by this system.Besides,the methodology can also be served as a basis for the future development of environmental risk response system design.
基金supported by the National Natural Science Foundation of China(No.52177087)the High-End Foreign Experts Project(No.G2022163018L).
文摘The widespread use of distributed energy sources provides exciting potential for demand-side energy sharing and collective self-consumption schemes.Demand-side energy sharing and collective self-consumption systems are committed to coordinating the operation of distributed generation,energy storage,and load demand.Recently,with the development of Internet technology,sharing economy is rapidly penetrating various fields.The application of sharing economy in the energy sector enables more and more end-users to participate in energy transactions.However,the deployment of energy sharing technologies poses many challenges.This paper comprehensively reviews recent developments in demand-side energy sharing and collective self-consumption schemes.The definition and classification of sharing economy are presented,with a focus on the applications in the energy sector:virtual power plants,peer-to-peer energy trading,shared energy storage,and microgrid energy sharing cloud.Challenges and future research directions are thoroughly discussed.
基金the State Key Program of the National Natural Science Fundation of China under Grant No.51138001the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No.51421064+2 种基金the State Key Laboratory of Coastal and Offshore Engineering Young Scholars Innovation Fund(LY1609)the Fundamental Research Funds for the Central Universities under Grant No.DUT15TD17the Open Research Fund of Hunan Province Key Laboratory of Key Technologies for Water Power Resources Development under Grant No.PKLHD20130
文摘: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic methods to analyze parameter uncertainty. Directly manually dealing with the calculated floor response spectra (FRS) values of deterministic approaches is the first method. The second method is to perform probability statistical analysis of the FRS results on the basis of the Monte Carlo method. The two methods can only reflect the overall effects of the uncertain parameters, and the results cannot be screened for a certain parameter's influence and contribution. In this study, based on the dynamic analyses of the floor response spectra of NPPs, a comprehensive index of the assessed impact for various uncertain parameters is presented and recommended, including the correlation coefficient, the regression slope coefficient and Tornado swing. To compensate for the lack of guidance in the NPP seismic standards, the proposed method can effectively be used to evaluate the contributions of various parameters from the aspects &sensitivity, acuity and statistical swing correlations. Finally, examples are provided to verify the set of indicators from systematic and intuitive perspectives, such as the uncertainty of the impact of the structure parameters and the contribution to the FRS of NPPs. The index is sensitive to different types of parameters, which provides a new technique for evaluating the anti-seismic parameters required for NPPs.
基金Supported by:Scientific Research Program of China General Nuclear Power Corporation(CGN)under Grant No.K-A2017.054Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant No.KYCX19_0093。
文摘Research to reliably predict the seismic response of nuclear power stations with a pile-raft foundation is needed to meet the high safety requirements of nuclear power stations.In this study,a scaled superstructure with a 4×3 pile-raft foundation,which is constructed in Shanxi kaolin clay,is modelled.Accordingly,the characteristics of seismic response for nuclear power stations with a pile-raft foundation are analyzed using dynamic centrifuge tests.In particular,multiple earthquake motions with different magnitudes and frequency properties are utilized to map the relationship between structural response and properties of earthquake motions.The results show that the seismic response of the soil,raft,and structure are significantly affected by the natural frequency and magnitude of the earthquake motion.The soil surface acceleration is lower than the raft acceleration.The results provide a reliable reference to better understand the seismic response of nuclear power stations.
文摘With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost.
文摘Demand Response(DR)is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting.This research paper presents different DR programs in deregulated environments.The description and the classification of DR along with their potential benefits and associated cost components are presented.In addition,most DR measurement indices and their evaluation are also highlighted.Initially,the economic load model incorporated thermal,wind,and energy storage by considering the elasticity market price from its calculated locational marginal pricing(LMP).The various DR programs like direct load control,critical peak pricing,real-time pricing,time of use,and capacity market programs are considered during this study.The effect of demand response in electricity prices is highlighted using a simulated study on IEEE 30 bus system.Simulation is done by the Shuffled Frog Leap Algorithm(SFLA).Comprehensive performance comparison on voltage deviations,losses,and cost with and without considering DR is also presented in this paper.
文摘The statistical characteristics of strong ground motion specified by response spectrum and power spectral density function are studied using 190 strong-motion records of the Haicheng and Tangshan earthquakes in China and 138 earthquakes in the western United States.The response spectrum is normalized by the peak ground acceleration(i.e.,represented as spectral magnification factor),and the power spectral density function is described by the Kanai-Tajimi spectrum.The statistics and dependence of parameters are evaluated,and correlations between the spectral magnification factor or Kanai-Tajimi spectral parameters and the site condition,epicentral distance,or local magnitude are investigated.The statistical characteristics of spectra China and the U.S.A.are compared.Based on the results obtained the values of the statistics on spectral parameters for earthquake engineering applications in China are suggested.
基金supported in part by the Scientific Research Fund of Liaoning Provincial Education Department under Grant LQGD2019005in part by the Doctoral Start-up Foundation of Liaoning Province under Grant 2020-BS-141.
文摘Integrated energy system optimization scheduling can improve energy efficiency and low carbon economy.This paper studies an electric-gas-heat integrated energy system,including the carbon capture system,energy coupling equipment,and renewable energy.An energy scheduling strategy based on deep reinforcement learning is proposed to minimize operation cost,carbon emission and enhance the power supply reliability.Firstly,the lowcarbon mathematical model of combined thermal and power unit,carbon capture system and power to gas unit(CCP)is established.Subsequently,we establish a low carbon multi-objective optimization model considering system operation cost,carbon emissions cost,integrated demand response,wind and photovoltaic curtailment,and load shedding costs.Furthermore,considering the intermittency of wind power generation and the flexibility of load demand,the low carbon economic dispatch problem is modeled as a Markov decision process.The twin delayed deep deterministic policy gradient(TD3)algorithm is used to solve the complex scheduling problem.The effectiveness of the proposed method is verified in the simulation case studies.Compared with TD3,SAC,A3C,DDPG and DQN algorithms,the operating cost is reduced by 8.6%,4.3%,6.1%and 8.0%.
文摘Micro-grid plays a vital role in fulfilling the increasing demand by using distributed renewable energy resources. Demand and response technique can be broadly classified under the setup DR deployed (e.g. ISO’s/RTO’s). Demand response program can be implemented to improve power system quality, reliability and increasing demand. In modern power industry, strategic player can take more benefit from more emphasized DR study in terms of social benefit (uninterrupted power supply to consumers) and economy. This paper proposes the distributed micro-grid control and implemented control setup implemented demand response algorithm, which provides better power system reliability. This paper presents contingencies control demand and response for micro-grid. The main advantage of implementation of demand and response algorithms in Micro-grids provides reliable power supplies to consumers. The proposed micro-grid TCP/IP setup provides a chance to respond the contingencies to recover the shed to active condition. Micro-grid controller implements demand and response algorithm reasonable for managing the demand of the load and intelligent load scheme in case of blackout.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.52107107).
文摘As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.
文摘This paper has an objective to show a developed quantitative criterion,based in two mathematical variables that explicit the deviation degree of a normal situation,applying simultaneously data from terminal impedances and frequency response.Based in more than 100-measured equipment,of different applications(step-up transformer,transmission transformer,etc.,),for a period of 10 years,the work presents some examples of practical application of this methodology in Brazilian Electrical System.
基金Project supported by the National Natural Science Foundation of China(Nos.11172233,11302169,11302170,and 11472212)the Fundamental Research Funds for the Central Universities(No.3102014JCQ01079)
文摘The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real-power is used to Combined with the global properties of the noise-free system, the evolutionary process of the tran- sient PDFs is revealed. The results show that stochastic P-bifurcation occurs when the system parameter varies in the response analysis and the stationary PDF evolves from bimodal to unimodal along the unstable manifold during the bifurcation.