Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capabl...Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. In this work, we develop a MATLAB code to examine the effect of the smart grid applications in improving the reliability of the power distribution networks via Monte Carlo Simulation approach. The system used in this paper is the IEEE 34 test feeder. The objective is to measure the installations of the Automatic Reclosers (ARs) as well as the Distributed Generators (DGs) on the reliability indices, SAIDI, SAIFI, CAIDI and EUE, and make comparisons with results from a previous study done by the authors using another approach. The MATLAB code should provide close results to the output of the previous research to verify its effectiveness.展开更多
In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong...In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
Based on the De.Morgan laws and Boolean simplification, a recursive decomposition method is introduced in this paper to identify the main exclusive safe paths and failed paths of a network. The reliability or the reli...Based on the De.Morgan laws and Boolean simplification, a recursive decomposition method is introduced in this paper to identify the main exclusive safe paths and failed paths of a network. The reliability or the reliability bound of a network can be conveniently expressed as the summation of the joint probabilities of these paths. Under the multivariate normal distribution assumption, a conditioned reliability index method is developed to evaluate joint probabilities of various exclusive safe paths and failed paths, and, finally, the seismic reliability or the reliability bound of an electric power system. Examples given in the paper show that the method is very simple and provides accurate results in the seismic reliability analysis.展开更多
Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capabl...Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in this paper is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. In addition, the goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility’s distribution system and measure the potential improvement of its reliability.展开更多
Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tas...Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tasks and low efficiency due to different degradation processes of different sorts of equipment.To address this problem,this paper introduces a preventive opportunistic maintenance(POM)method for TPSS based on equipment reliability.Firstly,a POM model is established by considering the equipment reliability degradation process based on Weibull distribution.Then,by considering the total power outage time in the planned operation cycle of TPSS as the optimization objective,the optimal maintenance scheme of TPSS is formulated by iterative method of maintenance strategies.The proposed method is verified by introducing practical maintenance strategies and fault record data of the traction transformer,circuit breaker and disconnector in an actual TPSS of a railway administration.Results show that the presented method can make full use of the existing fault data to develop a POM scheme for TPSS.It can improve maintenance efficiency and reduce power outage time,providing guidance to formulate scientific maintenance strategies for TPSS.展开更多
In this paper, a new technique are developed for optimal design of water distribution system besed on reliability. It applies a linear programming algorithm to the optimal design based on reliability. Within a small o...In this paper, a new technique are developed for optimal design of water distribution system besed on reliability. It applies a linear programming algorithm to the optimal design based on reliability. Within a small optimal search step range,the objective function and constraints can be expressed in the first order Taylor-expanding form,and three sub-models (a steady-state simulation model, a reliability model and a linear optimization model) are linked each in optimal searches. Thus, a traditional non linear problem can be solved by a linear model, the computing burden is significantly decreased. Therefore, the linear optimal model developed by the paper has more practical significance.展开更多
The paper presents results of reliability analysis made for lignite fired 370 MW rated power units installed in the Belchatow Power Plant (Poland). The concept of standardized power unit and the method of a histogram ...The paper presents results of reliability analysis made for lignite fired 370 MW rated power units installed in the Belchatow Power Plant (Poland). The concept of standardized power unit and the method of a histogram with a set number of observations in each class were applied in a study. The study includes analysis of probability distributions of operation times and repair times for the main power unit components. Empirical probability distribution functions have been identified and their parameters estimated in the study. The final forecast includes an estimation of such reliability measures like expected operation time, expected failure rate, average repair time and expected annual failure duration.展开更多
Data on time between complete power outages, Time between Failure (TBF) in Uyo were considered. Trend test and serial correlation test were conducted graphically for the data. The tests proved that the data were ident...Data on time between complete power outages, Time between Failure (TBF) in Uyo were considered. Trend test and serial correlation test were conducted graphically for the data. The tests proved that the data were identically and independently distributed (iid). Summary statistics of the data showed that complete power outage occurred 416 times between the year 2014 and 2018. The maximum likelihood estimation method was used to estimate the parameters of Weibull 2-parameter, Normal, Lognormal 2-parameter and exponential distributions. The values of Kolmogorov-Smirnov, Anderson Darling and Chi-Square statistics were used to determine the best fit distributions. A model</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">for the computation of reliability of electric power was then proposed</span></span></span><span style="font-family:Verdana;">.展开更多
Cohesion(c) and friction angle(φ) of rock are important parameters required for reliability analysis of rock slope stability. There is correlation between c and φ which affects results of reliability analysis of roc...Cohesion(c) and friction angle(φ) of rock are important parameters required for reliability analysis of rock slope stability. There is correlation between c and φ which affects results of reliability analysis of rock slope stability. However, the characterization of joint probability distribution of c and φ through which their correlation can be estimated requires a large amount of rock property data, which are often not available for most rock engineering projects. As a result, the correlation between c and φ is often ignored or simply assumed during reliability studies, which may lead to bias estimation of failure probability. In probabilistic rock slope stability analysis, the influence of ignoring or simply assuming the correlation of the rock strength parameters(i.e., c and φ) on the reliability of rock slopes has not been fully investigated. In this study, a Bayesian approach is developed to characterize the correlation between c and φ, and an expanded reliability-based design(RBD) approach is developed to assess the influence of correlation between c and φ on reliability of a rock slope. The Bayesian approach characterizes the sitespecific joint probability distribution of c and φ, and quantifies the correlation between c and φ using available limited data pairs of c and φ from a rock project. The expanded RBD approach uses the joint probability distribution of c and φ obtained through the Bayesian approach as inputs, to determine the reliability of a rock slope. The approach gives insight into the propagation of the correlation between c and φ through their joint probability into the reliability analysis, and their influence on the calculated reliability of the rock slope. The approaches may be applied in practice with little additional effort from a conventional analysis. The proposed approaches are illustrated using real c and φ data pairs obtained from laboratory tests of fractured rock at Forsmark, Sweden.展开更多
A 28 V-half-regulated power bus topology and an integrated PCDU (Power Conditioning and Distribution Unit) were adopted to meet the energy demand for the Chang'e 4 relay satellite.This paper first introduces the m...A 28 V-half-regulated power bus topology and an integrated PCDU (Power Conditioning and Distribution Unit) were adopted to meet the energy demand for the Chang'e 4 relay satellite.This paper first introduces the mission features and composition of the PSDS (Power Supply and Distribution System) for the Chang'e 4 relay satellite.Due to this satellite's unusual orbit,operational mode and project restrictions,special analysis and design was conducted on the PSDS from the perspective of weight-reduction,power management,and reliability and so on.Extreme low temperature storage of SA (Solar Array) was considered and how the antenna affects the SA was analyzed.A new kind of high-specific-energy 45 Ah (Ampere-hour) battery cell was used for the first time.To make sure that the satellite would successfully pass the long shadow zones,a 100% DOD (Depth of Discharge) experiment was carried out on the battery.Since the sunlight is almost always available and there are very few times for the battery to charge or discharge,battery care to extend its lifetime is also discussed.PCDU is a device that integrates power conditioning and power distribution in one unit.The PCDU on Chang'e 4 relay satellite can output more power with less weight because of the adoption of a 28 V-half-regulated power bus topology which was also used for the first time and used lighter material for its mechanical framework.Experiment under low temperature on PCDU was conducted as well and a hot backup equalizing charge technique which is beneficial to keep performance of the battery is illustrated.The power distribution module,which is a module of PCDU,enhances the power utilization security by utilizing a static impedance measurement and build-in-test to avoid possible short circuits.As for EED (Electrical Explosive Device) module,a protection plug was specially designed and three switches with different functions were connected in series to prevent the EED from exploding by error.In addition,the allowable minimum EED bus voltage for each EED was evaluated in case of low battery voltage caused by the possible postponement of the launching time.Complete verification experiments on the ground were conducted to confirm the correctness of the design and on-orbit test data conformed to the expected results and theoretical calculation.The power supply and distribution system has been working normally since the day the Chang'e 4 relay satellite was launched into space.展开更多
Reliable planning and operation of power distribution systems are of great significance. In this paper, the impactincrement based state enumeration(IIBSE) method is modified to adapt to the features of distribution sy...Reliable planning and operation of power distribution systems are of great significance. In this paper, the impactincrement based state enumeration(IIBSE) method is modified to adapt to the features of distribution systems. With the proposed method, the expectation, probabilistic, and duration reliability indices can be accurately obtained with a lower enumerated order of contingency states. In addition, the time-consuming optimal power flow(OPF) calculation can be replaced by a simple matrix operation for both independent and radial series failure states. Therefore, the accuracy and efficiency of the assessment process are improved comprehensively. The case of RBTS bus 6 system and IEEE 123 node test feeder system are utilized to test the performance of the modified IIBSE. The results show the superiority of the proposed method over Monte Carlo(MC) sampling and state enumeration(SE) methods in distribution systems.展开更多
A new formula of entropy for optimal design of water distribution systems is developed in the paper. The value of entropy obtained by the formula can be used to specify the interior connectivity in system and .reliabi...A new formula of entropy for optimal design of water distribution systems is developed in the paper. The value of entropy obtained by the formula can be used to specify the interior connectivity in system and .reliability of providing water for demanded nodes. Based on the formula, an entropy-optimization model is developed. Two networks are used as the examples of optimal design. The optimal results shows its obvious advantage of litter computer time. Therefore, the entropy-optimization model has more practical significance.展开更多
As extreme weather events have become more frequent in recent years,improving the resilience and reliability of power systems has become an important area of concern.In this paper,a robust preventive-corrective securi...As extreme weather events have become more frequent in recent years,improving the resilience and reliability of power systems has become an important area of concern.In this paper,a robust preventive-corrective security-constrained optimal power flow(RO-PCSCOPF)model is proposed to improve power system reliability under N−k outages.Both the short-term emergency limit(STL)and the long-term operating limit(LTL)of the post-contingency power flow on the branch are considered.Compared with the existing robust corrective SCOPF model that only considers STL or LTL,the proposed ROPCSCOPF model can achieve a more reliable generation dispatch solution.In addition,this paper also summarizes and compares the solution methods for solving the N−k SCOPF problem.The computational efficiency of the classical Benders decomposition(BD)method,robust optimization(RO)method,and line outage distribution factor(LODF)method are investigated on the IEEE 24-bus Reliability Test System and 118-bus system.Simulation results show that the BD method has the worst computation performance.The RO method and the LODF method have comparable performance.However,the LODF method can only be used for the preventive SCOPF and not for the corrective SCOPF.The RO method can be used for both.展开更多
Fault restoration techniques have always been crucial for distribution system operators(DSOs).In the last decade,it started to gain more and more importance due to the introduction of output-based regulations where DS...Fault restoration techniques have always been crucial for distribution system operators(DSOs).In the last decade,it started to gain more and more importance due to the introduction of output-based regulations where DSO performances are evaluated according to frequency and duration of energy supply interruptions.The paper presents a tabu-searchbased algorithm able to assist distribution network operational engineers in identifying solutions to restore the energy supply after permanent faults.According to the network property,two objective functions are considered to optimize either reliability or resiliency.The mathematical formulation includes the traditional feeders,number of switching operation limit,and radiality constraints.Thanks to the DSO of Milan,Unareti,the proposed algorithm has been tested on a real distribution network to investigate its effectiveness.展开更多
A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gatin...A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gating circuit in high speed circuit, a distributed and early clock gating method was developed on its instruction fetch & decoder unit, its pipelined data-path unit and its super-Harvard memory interface unit. The core was implemented following the Synopsys back-end flow under TSMC (Taiwan Silicon manufacture corporation) 0.18-μm 1.8-V 1P6M process, with a core size of 2 mm×2 mm. Result shows that it can run under 200 MHz with a power performance around 0.3 mW/MIPS. Meanwhile, only 39.7% circuit is active simultaneously in average, compared to its non-gating counterparts.展开更多
There is a general concern that the increasing penetration of electric vehicles(EVs)will result in higher aging failure probability of equipment and reduced network reliability.The electricity costs may also increase,...There is a general concern that the increasing penetration of electric vehicles(EVs)will result in higher aging failure probability of equipment and reduced network reliability.The electricity costs may also increase,due to the exacerbation of peak load led by uncontrolled EV charging.This paper proposes a linear optimization model for the assessment of the benefits of EV smart charging on both network reliability improvement and electricity cost reduction.The objective of the proposed model is the cost minimization,including the loss of load,repair costs due to aging failures,and EV charging expenses.The proposed model incorporates a piecewise linear model representation for the failure probability distributions and utilizes a machine learning approach to represent the EV charging load.Considering two different test systems(a 5-bus network and the IEEE 33-bus network),this paper compares aging failure probabilities,service unavailability,expected energy not supplied,and total costs in various scenarios with and without the implementation of EV smart charging.展开更多
文摘Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. In this work, we develop a MATLAB code to examine the effect of the smart grid applications in improving the reliability of the power distribution networks via Monte Carlo Simulation approach. The system used in this paper is the IEEE 34 test feeder. The objective is to measure the installations of the Automatic Reclosers (ARs) as well as the Distributed Generators (DGs) on the reliability indices, SAIDI, SAIFI, CAIDI and EUE, and make comparisons with results from a previous study done by the authors using another approach. The MATLAB code should provide close results to the output of the previous research to verify its effectiveness.
基金supported by National Natural Science Foundation of China (Grant Nos. 51135003, U1234208, 51205050)New Teachers' Fund for Doctor Stations of Ministry of Education of China (Grant No.20110042120020)+1 种基金Fundamental Research Funds for the Central Universities, China (Grant No. N110303003)China Postdoctoral Science Foundation (Grant No. 2011M500564)
文摘In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
基金National Outstanding Youth Science Foundation of China Under Grant No.598251005
文摘Based on the De.Morgan laws and Boolean simplification, a recursive decomposition method is introduced in this paper to identify the main exclusive safe paths and failed paths of a network. The reliability or the reliability bound of a network can be conveniently expressed as the summation of the joint probabilities of these paths. Under the multivariate normal distribution assumption, a conditioned reliability index method is developed to evaluate joint probabilities of various exclusive safe paths and failed paths, and, finally, the seismic reliability or the reliability bound of an electric power system. Examples given in the paper show that the method is very simple and provides accurate results in the seismic reliability analysis.
文摘Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in this paper is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. In addition, the goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility’s distribution system and measure the potential improvement of its reliability.
基金the National Natural Science Foundation of China under Grant(51907166)the Science and Technology Project of CHINA RAILWAY under Grant(2017J001-F&N2018G023)the Sichuan Science and Technology Program under Grant(2018GZ0020).
文摘Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tasks and low efficiency due to different degradation processes of different sorts of equipment.To address this problem,this paper introduces a preventive opportunistic maintenance(POM)method for TPSS based on equipment reliability.Firstly,a POM model is established by considering the equipment reliability degradation process based on Weibull distribution.Then,by considering the total power outage time in the planned operation cycle of TPSS as the optimization objective,the optimal maintenance scheme of TPSS is formulated by iterative method of maintenance strategies.The proposed method is verified by introducing practical maintenance strategies and fault record data of the traction transformer,circuit breaker and disconnector in an actual TPSS of a railway administration.Results show that the presented method can make full use of the existing fault data to develop a POM scheme for TPSS.It can improve maintenance efficiency and reduce power outage time,providing guidance to formulate scientific maintenance strategies for TPSS.
文摘In this paper, a new technique are developed for optimal design of water distribution system besed on reliability. It applies a linear programming algorithm to the optimal design based on reliability. Within a small optimal search step range,the objective function and constraints can be expressed in the first order Taylor-expanding form,and three sub-models (a steady-state simulation model, a reliability model and a linear optimization model) are linked each in optimal searches. Thus, a traditional non linear problem can be solved by a linear model, the computing burden is significantly decreased. Therefore, the linear optimal model developed by the paper has more practical significance.
文摘The paper presents results of reliability analysis made for lignite fired 370 MW rated power units installed in the Belchatow Power Plant (Poland). The concept of standardized power unit and the method of a histogram with a set number of observations in each class were applied in a study. The study includes analysis of probability distributions of operation times and repair times for the main power unit components. Empirical probability distribution functions have been identified and their parameters estimated in the study. The final forecast includes an estimation of such reliability measures like expected operation time, expected failure rate, average repair time and expected annual failure duration.
文摘Data on time between complete power outages, Time between Failure (TBF) in Uyo were considered. Trend test and serial correlation test were conducted graphically for the data. The tests proved that the data were identically and independently distributed (iid). Summary statistics of the data showed that complete power outage occurred 416 times between the year 2014 and 2018. The maximum likelihood estimation method was used to estimate the parameters of Weibull 2-parameter, Normal, Lognormal 2-parameter and exponential distributions. The values of Kolmogorov-Smirnov, Anderson Darling and Chi-Square statistics were used to determine the best fit distributions. A model</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">for the computation of reliability of electric power was then proposed</span></span></span><span style="font-family:Verdana;">.
基金supported by grants from the Research Grants Council of the Hong Kong,Special Administrative Region,China [Project No.9042172 (CityU11200115)and Project No.8779012(T22-603/15N)]
文摘Cohesion(c) and friction angle(φ) of rock are important parameters required for reliability analysis of rock slope stability. There is correlation between c and φ which affects results of reliability analysis of rock slope stability. However, the characterization of joint probability distribution of c and φ through which their correlation can be estimated requires a large amount of rock property data, which are often not available for most rock engineering projects. As a result, the correlation between c and φ is often ignored or simply assumed during reliability studies, which may lead to bias estimation of failure probability. In probabilistic rock slope stability analysis, the influence of ignoring or simply assuming the correlation of the rock strength parameters(i.e., c and φ) on the reliability of rock slopes has not been fully investigated. In this study, a Bayesian approach is developed to characterize the correlation between c and φ, and an expanded reliability-based design(RBD) approach is developed to assess the influence of correlation between c and φ on reliability of a rock slope. The Bayesian approach characterizes the sitespecific joint probability distribution of c and φ, and quantifies the correlation between c and φ using available limited data pairs of c and φ from a rock project. The expanded RBD approach uses the joint probability distribution of c and φ obtained through the Bayesian approach as inputs, to determine the reliability of a rock slope. The approach gives insight into the propagation of the correlation between c and φ through their joint probability into the reliability analysis, and their influence on the calculated reliability of the rock slope. The approaches may be applied in practice with little additional effort from a conventional analysis. The proposed approaches are illustrated using real c and φ data pairs obtained from laboratory tests of fractured rock at Forsmark, Sweden.
文摘A 28 V-half-regulated power bus topology and an integrated PCDU (Power Conditioning and Distribution Unit) were adopted to meet the energy demand for the Chang'e 4 relay satellite.This paper first introduces the mission features and composition of the PSDS (Power Supply and Distribution System) for the Chang'e 4 relay satellite.Due to this satellite's unusual orbit,operational mode and project restrictions,special analysis and design was conducted on the PSDS from the perspective of weight-reduction,power management,and reliability and so on.Extreme low temperature storage of SA (Solar Array) was considered and how the antenna affects the SA was analyzed.A new kind of high-specific-energy 45 Ah (Ampere-hour) battery cell was used for the first time.To make sure that the satellite would successfully pass the long shadow zones,a 100% DOD (Depth of Discharge) experiment was carried out on the battery.Since the sunlight is almost always available and there are very few times for the battery to charge or discharge,battery care to extend its lifetime is also discussed.PCDU is a device that integrates power conditioning and power distribution in one unit.The PCDU on Chang'e 4 relay satellite can output more power with less weight because of the adoption of a 28 V-half-regulated power bus topology which was also used for the first time and used lighter material for its mechanical framework.Experiment under low temperature on PCDU was conducted as well and a hot backup equalizing charge technique which is beneficial to keep performance of the battery is illustrated.The power distribution module,which is a module of PCDU,enhances the power utilization security by utilizing a static impedance measurement and build-in-test to avoid possible short circuits.As for EED (Electrical Explosive Device) module,a protection plug was specially designed and three switches with different functions were connected in series to prevent the EED from exploding by error.In addition,the allowable minimum EED bus voltage for each EED was evaluated in case of low battery voltage caused by the possible postponement of the launching time.Complete verification experiments on the ground were conducted to confirm the correctness of the design and on-orbit test data conformed to the expected results and theoretical calculation.The power supply and distribution system has been working normally since the day the Chang'e 4 relay satellite was launched into space.
基金supported in part by the National Natural Science Foundation of China (No.52077150)the National Key Research and Development Program of China (No.2019YFE0118000)。
文摘Reliable planning and operation of power distribution systems are of great significance. In this paper, the impactincrement based state enumeration(IIBSE) method is modified to adapt to the features of distribution systems. With the proposed method, the expectation, probabilistic, and duration reliability indices can be accurately obtained with a lower enumerated order of contingency states. In addition, the time-consuming optimal power flow(OPF) calculation can be replaced by a simple matrix operation for both independent and radial series failure states. Therefore, the accuracy and efficiency of the assessment process are improved comprehensively. The case of RBTS bus 6 system and IEEE 123 node test feeder system are utilized to test the performance of the modified IIBSE. The results show the superiority of the proposed method over Monte Carlo(MC) sampling and state enumeration(SE) methods in distribution systems.
文摘A new formula of entropy for optimal design of water distribution systems is developed in the paper. The value of entropy obtained by the formula can be used to specify the interior connectivity in system and .reliability of providing water for demanded nodes. Based on the formula, an entropy-optimization model is developed. Two networks are used as the examples of optimal design. The optimal results shows its obvious advantage of litter computer time. Therefore, the entropy-optimization model has more practical significance.
基金This work was supported by the Education Department of Guangdong Province:New and Integrated Energy System Theory and Technology Research Group(No.2016KCXTD022)National Natural Science Foundation of China(No.51907031)+2 种基金Guangdong Basic and Applied Basic Research Foundation(Guangdong-Guangxi Joint Foundation)(No.2021A1515410009)China Scholarship CouncilBrunel University London BRIEF Funding。
文摘As extreme weather events have become more frequent in recent years,improving the resilience and reliability of power systems has become an important area of concern.In this paper,a robust preventive-corrective security-constrained optimal power flow(RO-PCSCOPF)model is proposed to improve power system reliability under N−k outages.Both the short-term emergency limit(STL)and the long-term operating limit(LTL)of the post-contingency power flow on the branch are considered.Compared with the existing robust corrective SCOPF model that only considers STL or LTL,the proposed ROPCSCOPF model can achieve a more reliable generation dispatch solution.In addition,this paper also summarizes and compares the solution methods for solving the N−k SCOPF problem.The computational efficiency of the classical Benders decomposition(BD)method,robust optimization(RO)method,and line outage distribution factor(LODF)method are investigated on the IEEE 24-bus Reliability Test System and 118-bus system.Simulation results show that the BD method has the worst computation performance.The RO method and the LODF method have comparable performance.However,the LODF method can only be used for the preventive SCOPF and not for the corrective SCOPF.The RO method can be used for both.
文摘Fault restoration techniques have always been crucial for distribution system operators(DSOs).In the last decade,it started to gain more and more importance due to the introduction of output-based regulations where DSO performances are evaluated according to frequency and duration of energy supply interruptions.The paper presents a tabu-searchbased algorithm able to assist distribution network operational engineers in identifying solutions to restore the energy supply after permanent faults.According to the network property,two objective functions are considered to optimize either reliability or resiliency.The mathematical formulation includes the traditional feeders,number of switching operation limit,and radiality constraints.Thanks to the DSO of Milan,Unareti,the proposed algorithm has been tested on a real distribution network to investigate its effectiveness.
基金The Research Project of China Military Department (No6130325)
文摘A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gating circuit in high speed circuit, a distributed and early clock gating method was developed on its instruction fetch & decoder unit, its pipelined data-path unit and its super-Harvard memory interface unit. The core was implemented following the Synopsys back-end flow under TSMC (Taiwan Silicon manufacture corporation) 0.18-μm 1.8-V 1P6M process, with a core size of 2 mm×2 mm. Result shows that it can run under 200 MHz with a power performance around 0.3 mW/MIPS. Meanwhile, only 39.7% circuit is active simultaneously in average, compared to its non-gating counterparts.
文摘There is a general concern that the increasing penetration of electric vehicles(EVs)will result in higher aging failure probability of equipment and reduced network reliability.The electricity costs may also increase,due to the exacerbation of peak load led by uncontrolled EV charging.This paper proposes a linear optimization model for the assessment of the benefits of EV smart charging on both network reliability improvement and electricity cost reduction.The objective of the proposed model is the cost minimization,including the loss of load,repair costs due to aging failures,and EV charging expenses.The proposed model incorporates a piecewise linear model representation for the failure probability distributions and utilizes a machine learning approach to represent the EV charging load.Considering two different test systems(a 5-bus network and the IEEE 33-bus network),this paper compares aging failure probabilities,service unavailability,expected energy not supplied,and total costs in various scenarios with and without the implementation of EV smart charging.