This article explores the role of distributed energy resources such as efficient solar cells that drive carbon neutrality within the solar energy. For example, the perovskite solar cells offer high efficiency and pote...This article explores the role of distributed energy resources such as efficient solar cells that drive carbon neutrality within the solar energy. For example, the perovskite solar cells offer high efficiency and potential for low-cost production. A novel theoretical model is discovered in distributed energy resources for power emissions and cost. The smart carbon neutrality approaches are analyzed in both theory and experiments. The advantages, current challenges, and future prospects of the related solutions are discussed methodically. By addressing stability and scalability issues, these approaches can contribute significantly to reducing carbon emissions and promoting sustainable energy solutions.展开更多
文摘This article explores the role of distributed energy resources such as efficient solar cells that drive carbon neutrality within the solar energy. For example, the perovskite solar cells offer high efficiency and potential for low-cost production. A novel theoretical model is discovered in distributed energy resources for power emissions and cost. The smart carbon neutrality approaches are analyzed in both theory and experiments. The advantages, current challenges, and future prospects of the related solutions are discussed methodically. By addressing stability and scalability issues, these approaches can contribute significantly to reducing carbon emissions and promoting sustainable energy solutions.