According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s...According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.展开更多
The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the fr...The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the friction coefficient and wear rate of the basalt sample were also characterized.Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants,and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment.展开更多
Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) op...Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) operating with helium or hydrogen. A pressurized gas such as helium circulates along the volumetric receiver, capturing the concentrated thermal solar energy to be further converted into electric power via a thermal cycle. The overall efficiency of the plant has been computed under variable parameters to determine the operating conditions for which efficiency and specific power are acceptable. As consequence of the proposed analysis, it is concluded that direct coupling between volumetric receivers and thermal engines renders high efficiency while avoiding an intermediate heat transfer medium.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is cl...CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.展开更多
There are two prominent features in the process of temperature control in solar collector field.Firstly,the dynamic model of solar collector field is nonlinear and complex,which needs to be simplified.Secondly,there a...There are two prominent features in the process of temperature control in solar collector field.Firstly,the dynamic model of solar collector field is nonlinear and complex,which needs to be simplified.Secondly,there are a lot of random and uncontrollable,measurable and unmeasurable disturbances in solar collector field.This paper uses Taylor formula and difference approximation method to design a dynamic matrix predictive control(DMC)by linearizing and discretizing the dynamic model of the solar collector field.In addition,the purpose of controlling the stability of the outlet solar field salt temperature is achieved by adjusting the mass flow of molten salt.In order to further improve the ability of the system to suppress unmeasured disturbances,a steady-state Kalman filter is designed to estimate state variables,so that the system has better stability and robustness.The simulation verification results show that the DMC control system based on Kamlan filtering has better control effect than the traditional DMC control system.In the case of large fluctuations in solar radiation intensity and consideration of undetectable interference,the overshoot of the system is reduced by 4%and the rise time remains unchanged.展开更多
CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and else...CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and elsewhere. This paper summarises the findings of a study by the European Academies Science Advisory Council which has examined the current status and development challenges of CSP, and consequently has evaluated the potential contribution of CSP in Europe and the MENA region to 2050. It identifies the actions that will be required by scientists, engineers, policy makers, politicians, business and investors alike, to enable this vast solar resource to make a major contribution to establishing a sustainable energy system. The study concludes that cost reductions of 50%-60% in CSP electricity may reasonably be expected in the next 10-15 years, enabling the technology to be cost competitive with fossil-fired power generation at some point between 2020 and 2030. Incorporation of storage delivers added value in enabling CSP to deliver dispatchable power. Incentive schemes will be needed in Europe and MENA countries to enable this point to be achieved. Such schemes should reflect the true value of electricity to the grid, effectively drive research and development, and ensure transparency of performance and cost data.展开更多
The aim of the article concerns to the achieved research results regarding the viability of a megawatt-class space power plant based on the Rankine cycle for which the main objectives are to highlight the key issues r...The aim of the article concerns to the achieved research results regarding the viability of a megawatt-class space power plant based on the Rankine cycle for which the main objectives are to highlight the key issues responsible for improving the Rankine cycle efficiency. Two working fluids are studied (water and ammonia) on the basis of its well known characteristics. Cycles operating under top and bottom temperatures approaching the state of the art technology associated to cooling fluid reservoirs are key to improve the efficiency. With such strategy, the achieved thermal efficiency increases more than 20% with respect to conventional power plants. Mentioned benefits associated to the strategy based on the reduction of the required payload capacity, the condenser radiation surface and the power plant mass represent the main advantages of the proposed innovation techniques.展开更多
The present study is focused on multi-objective performance optimization&thermodynamic analysis from the perspectives of energy and exergy for Recompression,Partial Cooling&Main Compression Intercooling superc...The present study is focused on multi-objective performance optimization&thermodynamic analysis from the perspectives of energy and exergy for Recompression,Partial Cooling&Main Compression Intercooling supercritical CO_(2)(sCO_(2))Brayton cycles for concentrated solar power(CSP)applications using machine learning algorithms.The novelty of this work lies in the integration of artificial neural networks(ANN)and genetic algorithms(GA)for optimizing the performance of advanced sCO_(2)power cycles considering climatic variation,which has significant implications for both the scientific community and engineering applications in the renewable energy sector.The methodology employed includes thermodynamic analysis based on energy,exergy&environmental factors including system performance optimization.The system is modelled for net power production of 15 MW thermal output utilizing equations for the energy and exergy balance for each component.Subsequently,thermodynamic model extracted dataset used for prediction&evaluation of Random Forest,XGBoost,KNN,AdaBoost,ANN and LightGBM algorithm.Finally,considering climate conditions,multi-objective optimization is carried out for the CSP integrated sCO_(2)Power cycle for optimal power output,exergy destruction,thermal and exergetic efficiency.Genetic algorithm and TOPSIS(technique for order of preference by similarity to ideal solution),multi-objective decision-making tool,were used to determine the optimum operating conditions.The major findings of this work reveal significant improvements in the performance of the advanced sCO_(2)cycle by 1.68%and 7.87%compared to conventional recompression and partial cooling cycle,respectively.This research could advance renewable energy technologies,particularly concentrated solar power,by improving power cycle designs to increase system efficiency and economic feasibility.Optimized advanced supercritical CO_(2)power cycles in concentrated solar power plants might increase renewable energy use and energy generation infrastructure,potentially opening new research avenues.展开更多
This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involvi...This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involving operating temperatures and locations.The simulation results reveal that power plants with novel receivers exhibit a superior thermodynamic and economic performance compared with traditional receivers.The annual electricity productions of power plants with novel receivers in Phoenix,Sevilla,and Tuotuohe are 8.5%,10.5%,and 14.4%higher than those with traditional receivers at the outlet temperature of 550℃.The levelized cost of electricity of power plants with double-selectivecoated receivers can be decreased by 6.9%,8.5%,and 11.6%.In Phoenix,the optimal operating temperature of the power plants is improved from 500℃to 560℃by employing a novel receiver.Furthermore,the sensitivity analysis of the receiver heat loss,solar absorption,and freeze protection temperature is also conducted to analyze the general rule of influence of the receiver performance on power plants performance.Solar absorption has a positive contribution to annual electricity productions,whereas heat loss and freeze protection temperature have a negative effect on electricity outputs.The results indicate that the novel receiver coupled with low melting temperature molten salt is the best configuration for improving the overall performance of the power plants.展开更多
The economic analysis of solar energy development is the basis of promoting the solar energy planning in north Africa and realizing the clean energy power transmission among continents. In this paper, the cost develop...The economic analysis of solar energy development is the basis of promoting the solar energy planning in north Africa and realizing the clean energy power transmission among continents. In this paper, the cost development trend of photovoltaic(PV) power and concentrating solar power(CSP) generation is analyzed, and the levelized cost of energy(LCOE) of solar power generation is forecasted. Then, taking the development of Tunisian solar energy as an example in the context of transcontinental transmission, PV power with energy storage and PV-CSP power generation are given as two kinds of development plan respectively. The installed capacity configurations of the two schemes are given with production simulation method, and comprehensive LCOE are calculated. The studies show that based on the LCOE forecast value, the LCOE of PV-CSP combined power generation will decrease when the annual utilization hours of transmission channel is increased. It can be chosen as one of important mode of the North Africa solar energy development.展开更多
The thermal stress-induced deformation issue of receiver is crucial to the performance and reliability of a parabolic-trough(PT) concentrating solar power(CSP) system with the promising direct steam generation(DSG) te...The thermal stress-induced deformation issue of receiver is crucial to the performance and reliability of a parabolic-trough(PT) concentrating solar power(CSP) system with the promising direct steam generation(DSG) technology.The objective of the present study is to propose a new-type receiver with axially-hollow spiral deflector and optimize the geometric structure to solve the above issue.To this end,optical-flow-thermal multi-physics coupling models have been established for the preheating,boiling and superheating sections of a typical PT-DSG loop.The simulation results show that our proposed new-type receiver demonstrates outstanding comprehensive performance.It can minimize the circumferential temperature difference through the spiral deflector while lower the flow resistance cost through the axially hollow structure at the same time.As quantitatively evaluated by the temperature uniformity improvement(ε_(ΔT)) and the performance evaluation criteria(PEC),different designs are achieved based on different optimal schemes.When ε_(ΔT)is of primary importance,the optimal design with torsional ratio of 1 is achieved,with ε_(ΔT)=25.4%,25.7%,41.5% and PEC=0.486,0.878,0.596corresponding to preheating,boiling,superheating sections,respectively.When PEC is of primary importance,the optimal design with torsional ratio of 6-6.5 is achieved,with PEC=0.950,2.070,0.993 and ε_(ΔT)=18.2%,13.3 %,19.4% corresponding to preheating,boiling,superheating sections,respectively.展开更多
Concentrating solar power(CSP)is considered as a comparatively economical,more efficient,and large capacity type of renewable energy technology.However,CSP generation is found restricted only to high solar radiation b...Concentrating solar power(CSP)is considered as a comparatively economical,more efficient,and large capacity type of renewable energy technology.However,CSP generation is found restricted only to high solar radiation belt and installed where high direct normal irradiance is available.This paper examines the viability of the adoption of the CSP system in a low sun belt region with a lower direct normal irradiance(DNI).Various critical analyses and plant economics have been evaluated with a lesser DNI state.The obtained results out of the designed system,subjected to low DNI are not found below par,but comparable to some extent with the performance results of such CSP plants at a higher DNI.The analysis indicates that incorporation of the thermal energy storage reduces the levelized cost of energy(LCOE)and augments the plant capacity factor.The capacity factor,the plant efficiency,and the LCOE are found to be 32.50%,17.56%,and 0.1952$/kWh,respectively.展开更多
Concentrated solar power plants can play a significant role in alleviating Sudan’s energy crisis.These plants can be established and implemented in Sudan,as their potential is considerably high due to the climate con...Concentrated solar power plants can play a significant role in alleviating Sudan’s energy crisis.These plants can be established and implemented in Sudan,as their potential is considerably high due to the climate conditions in Sudan.This study investigates the design of a parabolic trough concentrated solar power plant in Sudan and analyzes its technical and economic feasibility.The simulation of the plant’s model used System Advisor Model(SAM)software.To determine the best location for the construction of the plant,data from 15 cities in Sudan were compared with each other based on their solar radiation and land properties.Wadi Halfa,a city in the northern region of Sudan,was chosen as the location due to its good topographical properties and climate conditions.The results show that the proposed plant can generate 281.145 GWh of electricity annually with a capacity factor of 40.1%and an overall efficiency of 15%.Additionally,a simple cost analysis of the plant indicates a levelized cost of electricity of 0.155$/kWh.As the study results are consistent with the characteristics of similar plants,the proposed plant is considered technically and economically feasible under the conditions at its location.展开更多
Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatur...Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatures from radiation beams (as the solar ones) with moderate intensities. Solar radiation cannot be used directly to feed thermodynamic cycles, and optical concentration must be applied to that goal. In general, reflection from mirrors is preferred to refraction by lenses in this case, because they have less optical aberrations. Concentration conveys very high temperatures in the receiver. However, the higher the temperature, the lower the efficiency of the solar thermal apparatus. Besides that, economy also suffers quite a lot when going to very high concentration factors, which is one of the main burdens in the development of Solar Thermal Energy. A new configuration of solar radiation concentrator is presented. It includes a salient innovation in the way the mirrors are given the right curvature by mechanical forces. Those mirrors are originally flat and do not need any special thermal treatment for this purpose. The whole device concept has been guided by the principle of thermoeconomic coherence, which requires similar efforts in all degrees of freedom that have strong influence in the performance and cost of the system. The paper shows the decision tree that has oriented the project, following the principle of equilibrium in efforts, which leads to a design window of moderate values in the main variables. The prototype of this new configuration has already been built, and the first stage of research is considered to be finished, because the prototype has shown excellent conditions to include selected (fitting) technologies at a very low cost.展开更多
Concentrated solar power(CSP)plants are generally located in solar-abundant yet hot and water-stressed loca-tions.In such circumstances,efficient but water-intensive once-through wet cooling and water-free but ineffic...Concentrated solar power(CSP)plants are generally located in solar-abundant yet hot and water-stressed loca-tions.In such circumstances,efficient but water-intensive once-through wet cooling and water-free but inefficient air cooling are both unfavorable.Considering both thermal efficiency and water availability/temperature,recir-culating evaporative cooling is a better alternative.However,evaporative cooling still loses large amounts of water into the atmosphere and thus requires a nonstop water supply.Therefore,simultaneously reducing water loss and maintaining thermal efficiency requires efficient means of supplemental cooling for CSP plants.Follow-ing our previous work on scalable radiative cooling films and a kW-scale radiative cooling system,we explore the potential of consumptive water use reduction in recirculating wet-cooled CSP plants by integrating supplemental radiative cooling and cold storage.Through modeling of a reference CSP plant with a supplemental radiative cooling system as large as the plant solar field,the results show that 40%-60%of the annual consumptive water use can be potentially reduced in the hot southwestern U.S.region with daytime-only radiative cooling,whereas the annual potential water saving can be as much as 65%-85%if the radiative cooling system works both day and night with cold storage.展开更多
In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal ...In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.展开更多
Due to the intermittency and indeterminacy of solar irradiance,balancing energy supply and load demand remains a challenge.This paper proposed a switchable hybrid system that combines concentrating photovoltaic/concen...Due to the intermittency and indeterminacy of solar irradiance,balancing energy supply and load demand remains a challenge.This paper proposed a switchable hybrid system that combines concentrating photovoltaic/concentrating solar power(CPV/CSP)technology with thermal energy storage(TES)to achieve flexible electricity and thermal generation by adjusting the incident solar flux of photovoltaic(PV).The hybrid system can directly transfer surplus solar energy into high-quality heat for storage using a rotatable PV/heat receiver.The simulated results demonstrated that the hybrid system effectively improves power generation,optimally utilizes TES capacity,and reduces the levelized cost of electricity(LCOE).Over a selected seven-day period,the single-junction(1J)Ga As solar cells used in the hybrid system sustainably satisfied the load demand for more than five days without grid supplement,outperforming the CSP plant by an additional two days.The hybrid system utilizing the 1J Ga As with the base configuration of solar multiple(SM)of 1.26 and TES capacity of 5 h improved the annual power production and renewable penetration(RP)by 20.8%and 24.8%compared with the conventional CSP plant,respectively.The hybrid plant with monosilicon and a configuration of SM(1.8),PV ratio(1),and TES capacity(6 h)achieved an optimal LCOE of11.52$ct/k Wh and RP of 75.5%,which is 8.8%lower and 12.1%higher than the CSP plant,respectively.展开更多
To reduce the levelized cost of energy for concentrating solar power(CSP),the outlet temperature of the solar receiver needs to be higher than 700°C in the next-generation CSP.Because of extensive engineering app...To reduce the levelized cost of energy for concentrating solar power(CSP),the outlet temperature of the solar receiver needs to be higher than 700°C in the next-generation CSP.Because of extensive engineering application experience,the liquid-based receiver is an attractive receiver technology for the next-generation CSP.This review is focused on four of the most promising liquid-based receivers,including chloride salts,sodium,lead-bismuth,and tin receivers.The challenges of these receivers and corresponding solutions are comprehensively reviewed and classified.It is concluded that combining salt purification and anti-corrosion receiver materials is promising to tackle the corrosion problems of chloride salts at high temperatures.In addition,reducing energy losses of the receiver from sources and during propagation is the most effective way to improve the receiver efficiency.Moreover,resolving the sodium fire risk and material compatibility issues could promote the potential application of liquid-metal receivers.Furthermore,using multiple heat transfer fluids in one system is also a promising way for the next-generation CSP.For example,the liquid sodium is used as the heat transfer fluid while the molten chloride salt is used as the storage medium.In the end,suggestions for future studies are proposed to bridge the research gaps for>700℃liquid-based receivers.展开更多
In the frame of a small scale concentrating solar power plant design and construction in Ouagadougou, an ORC (organic rankine cycle) machine is used to operate as a power block. In order to characterize the system a...In the frame of a small scale concentrating solar power plant design and construction in Ouagadougou, an ORC (organic rankine cycle) machine is used to operate as a power block. In order to characterize the system and further optimize its operating conditions, a model is developed in this paper to describe the operating process of the thermodynamic cycle. The so-called model is obtained by interconnecting the mathematical models of its components. Then, simulations are conducted to determine the parameters that impact mostly the efficiency of the system. Furthermore, authors conducted an exergy analysis of the system to evaluate the exergy destruction of every component for a chosen operating condition.展开更多
基金support of the projects Youth Science Foundation of Gansu Province(Source-Grid-Load Multi-Time Interval Optimization Scheduling Method Considering Wind-PV-CSP Combined DC Transmission,No.22JR11RA148)Youth Science Foundation of Lanzhou Jiaotong University(Research on Coordinated Dispatching Control Strategy of High Proportion New Energy Transmission Power System with CSP Power Generation,No.2020011).
文摘According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.
基金Funded by the National Natural Science Foundation of China(Nos.12004150,61674073)the Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515110998,2022A1515012123)+4 种基金the Science and Technology Planning Project of Guangdong Province(2017A050506056)the College Physics Teaching Team(114961700249)the Key Basic and Applied Research Project of Guangdong Province(2016KZDXM021)the Major Projects of Basic and Application Research in Guangdong Province(2017KZDXM055)the Natural Science Research Youth Project of Lingnan Normal University(QL1404)。
文摘The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the friction coefficient and wear rate of the basalt sample were also characterized.Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants,and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment.
文摘Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) operating with helium or hydrogen. A pressurized gas such as helium circulates along the volumetric receiver, capturing the concentrated thermal solar energy to be further converted into electric power via a thermal cycle. The overall efficiency of the plant has been computed under variable parameters to determine the operating conditions for which efficiency and specific power are acceptable. As consequence of the proposed analysis, it is concluded that direct coupling between volumetric receivers and thermal engines renders high efficiency while avoiding an intermediate heat transfer medium.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.
基金supported by the National Natural Science Foundation of China(Grant No.51667013)the Science and Technology Project of State Grid Corporation of China(Grant No.52272219000V).
文摘There are two prominent features in the process of temperature control in solar collector field.Firstly,the dynamic model of solar collector field is nonlinear and complex,which needs to be simplified.Secondly,there are a lot of random and uncontrollable,measurable and unmeasurable disturbances in solar collector field.This paper uses Taylor formula and difference approximation method to design a dynamic matrix predictive control(DMC)by linearizing and discretizing the dynamic model of the solar collector field.In addition,the purpose of controlling the stability of the outlet solar field salt temperature is achieved by adjusting the mass flow of molten salt.In order to further improve the ability of the system to suppress unmeasured disturbances,a steady-state Kalman filter is designed to estimate state variables,so that the system has better stability and robustness.The simulation verification results show that the DMC control system based on Kamlan filtering has better control effect than the traditional DMC control system.In the case of large fluctuations in solar radiation intensity and consideration of undetectable interference,the overshoot of the system is reduced by 4%and the rise time remains unchanged.
文摘CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and elsewhere. This paper summarises the findings of a study by the European Academies Science Advisory Council which has examined the current status and development challenges of CSP, and consequently has evaluated the potential contribution of CSP in Europe and the MENA region to 2050. It identifies the actions that will be required by scientists, engineers, policy makers, politicians, business and investors alike, to enable this vast solar resource to make a major contribution to establishing a sustainable energy system. The study concludes that cost reductions of 50%-60% in CSP electricity may reasonably be expected in the next 10-15 years, enabling the technology to be cost competitive with fossil-fired power generation at some point between 2020 and 2030. Incorporation of storage delivers added value in enabling CSP to deliver dispatchable power. Incentive schemes will be needed in Europe and MENA countries to enable this point to be achieved. Such schemes should reflect the true value of electricity to the grid, effectively drive research and development, and ensure transparency of performance and cost data.
文摘The aim of the article concerns to the achieved research results regarding the viability of a megawatt-class space power plant based on the Rankine cycle for which the main objectives are to highlight the key issues responsible for improving the Rankine cycle efficiency. Two working fluids are studied (water and ammonia) on the basis of its well known characteristics. Cycles operating under top and bottom temperatures approaching the state of the art technology associated to cooling fluid reservoirs are key to improve the efficiency. With such strategy, the achieved thermal efficiency increases more than 20% with respect to conventional power plants. Mentioned benefits associated to the strategy based on the reduction of the required payload capacity, the condenser radiation surface and the power plant mass represent the main advantages of the proposed innovation techniques.
文摘The present study is focused on multi-objective performance optimization&thermodynamic analysis from the perspectives of energy and exergy for Recompression,Partial Cooling&Main Compression Intercooling supercritical CO_(2)(sCO_(2))Brayton cycles for concentrated solar power(CSP)applications using machine learning algorithms.The novelty of this work lies in the integration of artificial neural networks(ANN)and genetic algorithms(GA)for optimizing the performance of advanced sCO_(2)power cycles considering climatic variation,which has significant implications for both the scientific community and engineering applications in the renewable energy sector.The methodology employed includes thermodynamic analysis based on energy,exergy&environmental factors including system performance optimization.The system is modelled for net power production of 15 MW thermal output utilizing equations for the energy and exergy balance for each component.Subsequently,thermodynamic model extracted dataset used for prediction&evaluation of Random Forest,XGBoost,KNN,AdaBoost,ANN and LightGBM algorithm.Finally,considering climate conditions,multi-objective optimization is carried out for the CSP integrated sCO_(2)Power cycle for optimal power output,exergy destruction,thermal and exergetic efficiency.Genetic algorithm and TOPSIS(technique for order of preference by similarity to ideal solution),multi-objective decision-making tool,were used to determine the optimum operating conditions.The major findings of this work reveal significant improvements in the performance of the advanced sCO_(2)cycle by 1.68%and 7.87%compared to conventional recompression and partial cooling cycle,respectively.This research could advance renewable energy technologies,particularly concentrated solar power,by improving power cycle designs to increase system efficiency and economic feasibility.Optimized advanced supercritical CO_(2)power cycles in concentrated solar power plants might increase renewable energy use and energy generation infrastructure,potentially opening new research avenues.
基金the National Natural Science Foundation of China(Grant Nos.51776193 and 5171101721)the Fundamental Research Funds for the Central Universities(No.WK6030000133).
文摘This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involving operating temperatures and locations.The simulation results reveal that power plants with novel receivers exhibit a superior thermodynamic and economic performance compared with traditional receivers.The annual electricity productions of power plants with novel receivers in Phoenix,Sevilla,and Tuotuohe are 8.5%,10.5%,and 14.4%higher than those with traditional receivers at the outlet temperature of 550℃.The levelized cost of electricity of power plants with double-selectivecoated receivers can be decreased by 6.9%,8.5%,and 11.6%.In Phoenix,the optimal operating temperature of the power plants is improved from 500℃to 560℃by employing a novel receiver.Furthermore,the sensitivity analysis of the receiver heat loss,solar absorption,and freeze protection temperature is also conducted to analyze the general rule of influence of the receiver performance on power plants performance.Solar absorption has a positive contribution to annual electricity productions,whereas heat loss and freeze protection temperature have a negative effect on electricity outputs.The results indicate that the novel receiver coupled with low melting temperature molten salt is the best configuration for improving the overall performance of the power plants.
基金supported by National Key Research and Development Plan(2016YFB0900100)State Grid Corporation Science and Technology Program(SGQHJY00GHJS1700078)Youth Fund of China Electrical Power Research Institute(NY84-17-003)
文摘The economic analysis of solar energy development is the basis of promoting the solar energy planning in north Africa and realizing the clean energy power transmission among continents. In this paper, the cost development trend of photovoltaic(PV) power and concentrating solar power(CSP) generation is analyzed, and the levelized cost of energy(LCOE) of solar power generation is forecasted. Then, taking the development of Tunisian solar energy as an example in the context of transcontinental transmission, PV power with energy storage and PV-CSP power generation are given as two kinds of development plan respectively. The installed capacity configurations of the two schemes are given with production simulation method, and comprehensive LCOE are calculated. The studies show that based on the LCOE forecast value, the LCOE of PV-CSP combined power generation will decrease when the annual utilization hours of transmission channel is increased. It can be chosen as one of important mode of the North Africa solar energy development.
基金financially supported by the National Natural Science Foundation of China (52176202)the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (41200101)。
文摘The thermal stress-induced deformation issue of receiver is crucial to the performance and reliability of a parabolic-trough(PT) concentrating solar power(CSP) system with the promising direct steam generation(DSG) technology.The objective of the present study is to propose a new-type receiver with axially-hollow spiral deflector and optimize the geometric structure to solve the above issue.To this end,optical-flow-thermal multi-physics coupling models have been established for the preheating,boiling and superheating sections of a typical PT-DSG loop.The simulation results show that our proposed new-type receiver demonstrates outstanding comprehensive performance.It can minimize the circumferential temperature difference through the spiral deflector while lower the flow resistance cost through the axially hollow structure at the same time.As quantitatively evaluated by the temperature uniformity improvement(ε_(ΔT)) and the performance evaluation criteria(PEC),different designs are achieved based on different optimal schemes.When ε_(ΔT)is of primary importance,the optimal design with torsional ratio of 1 is achieved,with ε_(ΔT)=25.4%,25.7%,41.5% and PEC=0.486,0.878,0.596corresponding to preheating,boiling,superheating sections,respectively.When PEC is of primary importance,the optimal design with torsional ratio of 6-6.5 is achieved,with PEC=0.950,2.070,0.993 and ε_(ΔT)=18.2%,13.3 %,19.4% corresponding to preheating,boiling,superheating sections,respectively.
文摘Concentrating solar power(CSP)is considered as a comparatively economical,more efficient,and large capacity type of renewable energy technology.However,CSP generation is found restricted only to high solar radiation belt and installed where high direct normal irradiance is available.This paper examines the viability of the adoption of the CSP system in a low sun belt region with a lower direct normal irradiance(DNI).Various critical analyses and plant economics have been evaluated with a lesser DNI state.The obtained results out of the designed system,subjected to low DNI are not found below par,but comparable to some extent with the performance results of such CSP plants at a higher DNI.The analysis indicates that incorporation of the thermal energy storage reduces the levelized cost of energy(LCOE)and augments the plant capacity factor.The capacity factor,the plant efficiency,and the LCOE are found to be 32.50%,17.56%,and 0.1952$/kWh,respectively.
文摘Concentrated solar power plants can play a significant role in alleviating Sudan’s energy crisis.These plants can be established and implemented in Sudan,as their potential is considerably high due to the climate conditions in Sudan.This study investigates the design of a parabolic trough concentrated solar power plant in Sudan and analyzes its technical and economic feasibility.The simulation of the plant’s model used System Advisor Model(SAM)software.To determine the best location for the construction of the plant,data from 15 cities in Sudan were compared with each other based on their solar radiation and land properties.Wadi Halfa,a city in the northern region of Sudan,was chosen as the location due to its good topographical properties and climate conditions.The results show that the proposed plant can generate 281.145 GWh of electricity annually with a capacity factor of 40.1%and an overall efficiency of 15%.Additionally,a simple cost analysis of the plant indicates a levelized cost of electricity of 0.155$/kWh.As the study results are consistent with the characteristics of similar plants,the proposed plant is considered technically and economically feasible under the conditions at its location.
文摘Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatures from radiation beams (as the solar ones) with moderate intensities. Solar radiation cannot be used directly to feed thermodynamic cycles, and optical concentration must be applied to that goal. In general, reflection from mirrors is preferred to refraction by lenses in this case, because they have less optical aberrations. Concentration conveys very high temperatures in the receiver. However, the higher the temperature, the lower the efficiency of the solar thermal apparatus. Besides that, economy also suffers quite a lot when going to very high concentration factors, which is one of the main burdens in the development of Solar Thermal Energy. A new configuration of solar radiation concentrator is presented. It includes a salient innovation in the way the mirrors are given the right curvature by mechanical forces. Those mirrors are originally flat and do not need any special thermal treatment for this purpose. The whole device concept has been guided by the principle of thermoeconomic coherence, which requires similar efforts in all degrees of freedom that have strong influence in the performance and cost of the system. The paper shows the decision tree that has oriented the project, following the principle of equilibrium in efforts, which leads to a design window of moderate values in the main variables. The prototype of this new configuration has already been built, and the first stage of research is considered to be finished, because the prototype has shown excellent conditions to include selected (fitting) technologies at a very low cost.
文摘Concentrated solar power(CSP)plants are generally located in solar-abundant yet hot and water-stressed loca-tions.In such circumstances,efficient but water-intensive once-through wet cooling and water-free but inefficient air cooling are both unfavorable.Considering both thermal efficiency and water availability/temperature,recir-culating evaporative cooling is a better alternative.However,evaporative cooling still loses large amounts of water into the atmosphere and thus requires a nonstop water supply.Therefore,simultaneously reducing water loss and maintaining thermal efficiency requires efficient means of supplemental cooling for CSP plants.Follow-ing our previous work on scalable radiative cooling films and a kW-scale radiative cooling system,we explore the potential of consumptive water use reduction in recirculating wet-cooled CSP plants by integrating supplemental radiative cooling and cold storage.Through modeling of a reference CSP plant with a supplemental radiative cooling system as large as the plant solar field,the results show that 40%-60%of the annual consumptive water use can be potentially reduced in the hot southwestern U.S.region with daytime-only radiative cooling,whereas the annual potential water saving can be as much as 65%-85%if the radiative cooling system works both day and night with cold storage.
文摘In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.
基金supported by the National Natural Science Foundation of China(Grant No.51821004)。
文摘Due to the intermittency and indeterminacy of solar irradiance,balancing energy supply and load demand remains a challenge.This paper proposed a switchable hybrid system that combines concentrating photovoltaic/concentrating solar power(CPV/CSP)technology with thermal energy storage(TES)to achieve flexible electricity and thermal generation by adjusting the incident solar flux of photovoltaic(PV).The hybrid system can directly transfer surplus solar energy into high-quality heat for storage using a rotatable PV/heat receiver.The simulated results demonstrated that the hybrid system effectively improves power generation,optimally utilizes TES capacity,and reduces the levelized cost of electricity(LCOE).Over a selected seven-day period,the single-junction(1J)Ga As solar cells used in the hybrid system sustainably satisfied the load demand for more than five days without grid supplement,outperforming the CSP plant by an additional two days.The hybrid system utilizing the 1J Ga As with the base configuration of solar multiple(SM)of 1.26 and TES capacity of 5 h improved the annual power production and renewable penetration(RP)by 20.8%and 24.8%compared with the conventional CSP plant,respectively.The hybrid plant with monosilicon and a configuration of SM(1.8),PV ratio(1),and TES capacity(6 h)achieved an optimal LCOE of11.52$ct/k Wh and RP of 75.5%,which is 8.8%lower and 12.1%higher than the CSP plant,respectively.
基金the National Natural Science Foundation of China(Grant Nos.51721004 and 51888103)the Research Plan of Shaanxi Province(Nos.2022GXLH-01-04 and 2019JCW-09).
文摘To reduce the levelized cost of energy for concentrating solar power(CSP),the outlet temperature of the solar receiver needs to be higher than 700°C in the next-generation CSP.Because of extensive engineering application experience,the liquid-based receiver is an attractive receiver technology for the next-generation CSP.This review is focused on four of the most promising liquid-based receivers,including chloride salts,sodium,lead-bismuth,and tin receivers.The challenges of these receivers and corresponding solutions are comprehensively reviewed and classified.It is concluded that combining salt purification and anti-corrosion receiver materials is promising to tackle the corrosion problems of chloride salts at high temperatures.In addition,reducing energy losses of the receiver from sources and during propagation is the most effective way to improve the receiver efficiency.Moreover,resolving the sodium fire risk and material compatibility issues could promote the potential application of liquid-metal receivers.Furthermore,using multiple heat transfer fluids in one system is also a promising way for the next-generation CSP.For example,the liquid sodium is used as the heat transfer fluid while the molten chloride salt is used as the storage medium.In the end,suggestions for future studies are proposed to bridge the research gaps for>700℃liquid-based receivers.
文摘In the frame of a small scale concentrating solar power plant design and construction in Ouagadougou, an ORC (organic rankine cycle) machine is used to operate as a power block. In order to characterize the system and further optimize its operating conditions, a model is developed in this paper to describe the operating process of the thermodynamic cycle. The so-called model is obtained by interconnecting the mathematical models of its components. Then, simulations are conducted to determine the parameters that impact mostly the efficiency of the system. Furthermore, authors conducted an exergy analysis of the system to evaluate the exergy destruction of every component for a chosen operating condition.