The jet-flow high shear mixer(JF-HSM)is a new type of intensified equipment with special configurations of the rotor and the stator.The mass transfer property and power consumption were studied in the solid-liquid sys...The jet-flow high shear mixer(JF-HSM)is a new type of intensified equipment with special configurations of the rotor and the stator.The mass transfer property and power consumption were studied in the solid-liquid system for a series of JF-HSMs involving different configuration parameters,such as rotor diameter,rotor blade inclination,rotor blade bending direction,stator diameter,and stator bottom opening diameter.The flow characteristics were examined by computational fluid dynamic simulations.Results indicate that the turbulent power consumption of the JF-HSM is affected by the change in rotor blade inclination and stator bottom opening.With the increase in the shear head size and the change in the rotor into a backward-curved blade,the solid-liquid mass transfer rate can be remarkably increased under the same input power.Dimensionless correlations for the mass transfer coefficient and power consumption were obtained to guide the scale-up design and selection of such a new type of equipment to intensify the overall mixing efficiency.展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2016YFD-0501402-04)the National Natural Science Foundation of China(Grant Nos.21776179,21621004)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT15R46).
文摘The jet-flow high shear mixer(JF-HSM)is a new type of intensified equipment with special configurations of the rotor and the stator.The mass transfer property and power consumption were studied in the solid-liquid system for a series of JF-HSMs involving different configuration parameters,such as rotor diameter,rotor blade inclination,rotor blade bending direction,stator diameter,and stator bottom opening diameter.The flow characteristics were examined by computational fluid dynamic simulations.Results indicate that the turbulent power consumption of the JF-HSM is affected by the change in rotor blade inclination and stator bottom opening.With the increase in the shear head size and the change in the rotor into a backward-curved blade,the solid-liquid mass transfer rate can be remarkably increased under the same input power.Dimensionless correlations for the mass transfer coefficient and power consumption were obtained to guide the scale-up design and selection of such a new type of equipment to intensify the overall mixing efficiency.