Valuable mineral resources are widely distributed throughout the seabed. autonomous underwater vehicles (AUVs) are preferable to remotely-operated vehicles (ROVs) when probing for such mineral resources as the extensi...Valuable mineral resources are widely distributed throughout the seabed. autonomous underwater vehicles (AUVs) are preferable to remotely-operated vehicles (ROVs) when probing for such mineral resources as the extensive exploration area makes it difficult to maintain contact with operators. AUVs depend on batteries, so their power consumption should be reduced to extend exploration time. Power for conventional marine instrument systems is incorporated in their waterproof sealing. External intermittent control of this power source until termination of exploration is challenging due to limitations imposed by the underwater environment. Thus, the AUV must have a power control system that can improve performance and maximize use of battery capacity. The authors developed such a power control system with a three-step algorithm. It automatically detects underwater operational states and can limit power, effectively decreasing power consumption by about 15%.展开更多
Power control is of paramount importance in combating the near-far problem and co-channel interference in a CDMA cellular system. Due to fast fading and ambient interference in a wireless channel, conventional fixed-s...Power control is of paramount importance in combating the near-far problem and co-channel interference in a CDMA cellular system. Due to fast fading and ambient interference in a wireless channel, conventional fixed-step power control schemes have difficulty in compensating for the fast fading channel dynamically and in a timely manner. To acquire flexible power regulation in order to maintain required transmission capacity under the given transmission quality requirement, we propose a hybrid power control scheme which makes full use of the simple fuzzy inference rule refined by an operator in the fuzzy control and prediction property from related previous results in Generalized Prediction Control (GPC). In implementation of this strategy, we classify the fading zone into three levels according to the signal-to-noise-rate (SNR) requirement. In each level the power compensation amount varies with fading gradient and the compensation scheme varies as well. The digital results show that adoption of the fuzzy-GPC power regulation scheme has acquired a reasonable performance improvement when compared with fixed-step and fuzzy schemes. According to theoretic analysis and simulation results, we can conclude that under a variational transmission environment, a flexible power regulation scheme such as fuzzy-GPC is easy to adapt to the environment and thus overcomes the near-far effect and multi-access interference effectively.展开更多
As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS...As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.展开更多
A brief introduction of principles and algorithm realization of uplink power control in CDMA mobile communication system based on IS 95 are given, and then the blocking probability and Erlang capacity under the condi...A brief introduction of principles and algorithm realization of uplink power control in CDMA mobile communication system based on IS 95 are given, and then the blocking probability and Erlang capacity under the condition of perfect and imperfect uplink power control are presented and analyzed. Finally the uplink power control algorithms are simulated, and the optimum uplink power control algorithm that maximizes system Erlang capacity is acquired.展开更多
Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefor...Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.展开更多
In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinfo...In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinforcement learning(DRL),significant progress has been made in the field of network optimization as DRL holds great promise for improving network performance and efficiency.In this work,our focus delves into the intricate challenge of joint cooperation clustering and downlink power control within CF-mMIMO networks.Leveraging the potent deep deterministic policy gradient(DDPG)algorithm,our objective is to maximize the proportional fairness(PF)for user rates,thereby aiming to achieve optimal network performance and resource utilization.Moreover,we harness the concept of“divide and conquer”strategy,introducing two innovative methods termed alternating DDPG(A-DDPG)and hierarchical DDPG(H-DDPG).These approaches aim to decompose the intricate joint optimization problem into more manageable sub-problems,thereby facilitating a more efficient resolution process.Our findings unequivo-cally showcase the superior efficacy of our proposed DDPG approach over the baseline schemes in both clustering and downlink power control.Furthermore,the A-DDPG and H-DDPG obtain higher performance gain than DDPG with lower computational complexity.展开更多
When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (S...When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (Silt) and improve the system performance. The existing problems about DS-CDMA outer loop power control for multi-service are introduced and the power control theoretical model is analyzed. System simulation is adopted on how to obtain the theoretical performance and parameter optimization of the power control algorithm. The OLPC algorithm is improved and the performance comparisons between the old algorithm and the improved algorithm are given. The results show good performance of the improved OLPC algorithm and prove the validity of the improved method for multi-service.展开更多
Today the high quality power supply is of essential in the economic development in a country. With the development of modem power systems and increasing demand for power supply, the electric power industry is facing a...Today the high quality power supply is of essential in the economic development in a country. With the development of modem power systems and increasing demand for power supply, the electric power industry is facing a great challenge in meeting the increased load demand with highest reliability and security with minimum transmission expenditure. Power system stability analysis and control is one of the most important issues in power systems. The problem becomes more and more serious in power systems with the development of modem power systems. The ability of a power system展开更多
This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature i...This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
Ion cyclotron wave resonance heating(ICRH) is one of the most important auxiliary methods to heat plasma in the Experimental Advanced Superconducting Tokamak(EAST). Several megawatts of power is transmitted through se...Ion cyclotron wave resonance heating(ICRH) is one of the most important auxiliary methods to heat plasma in the Experimental Advanced Superconducting Tokamak(EAST). Several megawatts of power is transmitted through separate coaxial lines and coupled with the plasma through arrays of loop antennas. The parameters of the ICRH system, including the injected power and phasing between antenna straps, are critical to the coupling efficiency of the power as well as the resulting impact on the heating efficiency. In this paper, we present a system for feedback control of the phase between the current straps and the ICRH power on EAST. The feedback control system was tested using both a matched dummy load and a plasma load, and it successfully maintained stable operation in the 2016 EAST campaign. Good control of the injected power and wave phases was achieved during edgelocalized mode operation.展开更多
In the fifth generation(5G)wireless system,a closed-loop power control(CLPC)scheme based on deep Q learning network(DQN)is introduced to intelligently adjust the transmit power of the base station(BS),which can improv...In the fifth generation(5G)wireless system,a closed-loop power control(CLPC)scheme based on deep Q learning network(DQN)is introduced to intelligently adjust the transmit power of the base station(BS),which can improve the user equipment(UE)received signal to interference plus noise ratio(SINR)to a target threshold range.However,the selected power control(PC)action in DQN is not accurately matched the fluctuations of the wireless environment.Since the experience replay characteristic of the conventional DQN scheme leads to a possibility of insufficient training in the target deep neural network(DNN).As a result,the Q-value of the sub-optimal PC action exceed the optimal one.To solve this problem,we propose the improved DQN scheme.In the proposed scheme,we add an additional DNN to the conventional DQN,and set a shorter training interval to speed up the training of the DNN in order to fully train it.Finally,the proposed scheme can ensure that the Q value of the optimal action remains maximum.After multiple episodes of training,the proposed scheme can generate more accurate PC actions to match the fluctuations of the wireless environment.As a result,the UE received SINR can achieve the target threshold range faster and keep more stable.The simulation results prove that the proposed scheme outperforms the conventional schemes.展开更多
The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tra...The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.展开更多
Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damp...Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.展开更多
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re...This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.展开更多
This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). ...This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.展开更多
Current uplink power control algorithm of code division multiple access (CDMA) time division duplex(TDD) system contains signal-to-interference-ratio(SIR) and interference measurement, which is based on history ...Current uplink power control algorithm of code division multiple access (CDMA) time division duplex(TDD) system contains signal-to-interference-ratio(SIR) and interference measurement, which is based on history information. However, the adjustment of transmission power of one user equipment(UE) will affect SIR of the others, because the power control is done independently of the power adjustment of other UE's. So the convergence speed of power control is not fast and the system performance degrades. In the proposed algorithm, all UE's assigned in same time slot adjust their transmission power based on current information, which takes into account the adjustments of transmission power of all UE's. The simulation results indicated that the proposed algorithm outperforms the old algorithm.展开更多
Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estim...Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.展开更多
Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI...Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.展开更多
An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A ...An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against link gain changes, and outperforms the reference algorithms.展开更多
文摘Valuable mineral resources are widely distributed throughout the seabed. autonomous underwater vehicles (AUVs) are preferable to remotely-operated vehicles (ROVs) when probing for such mineral resources as the extensive exploration area makes it difficult to maintain contact with operators. AUVs depend on batteries, so their power consumption should be reduced to extend exploration time. Power for conventional marine instrument systems is incorporated in their waterproof sealing. External intermittent control of this power source until termination of exploration is challenging due to limitations imposed by the underwater environment. Thus, the AUV must have a power control system that can improve performance and maximize use of battery capacity. The authors developed such a power control system with a three-step algorithm. It automatically detects underwater operational states and can limit power, effectively decreasing power consumption by about 15%.
文摘Power control is of paramount importance in combating the near-far problem and co-channel interference in a CDMA cellular system. Due to fast fading and ambient interference in a wireless channel, conventional fixed-step power control schemes have difficulty in compensating for the fast fading channel dynamically and in a timely manner. To acquire flexible power regulation in order to maintain required transmission capacity under the given transmission quality requirement, we propose a hybrid power control scheme which makes full use of the simple fuzzy inference rule refined by an operator in the fuzzy control and prediction property from related previous results in Generalized Prediction Control (GPC). In implementation of this strategy, we classify the fading zone into three levels according to the signal-to-noise-rate (SNR) requirement. In each level the power compensation amount varies with fading gradient and the compensation scheme varies as well. The digital results show that adoption of the fuzzy-GPC power regulation scheme has acquired a reasonable performance improvement when compared with fixed-step and fuzzy schemes. According to theoretic analysis and simulation results, we can conclude that under a variational transmission environment, a flexible power regulation scheme such as fuzzy-GPC is easy to adapt to the environment and thus overcomes the near-far effect and multi-access interference effectively.
文摘As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.
文摘A brief introduction of principles and algorithm realization of uplink power control in CDMA mobile communication system based on IS 95 are given, and then the blocking probability and Erlang capacity under the condition of perfect and imperfect uplink power control are presented and analyzed. Finally the uplink power control algorithms are simulated, and the optimum uplink power control algorithm that maximizes system Erlang capacity is acquired.
基金supported by the National Natural Science Foundation of China(No.52177122)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21050100)the Youth Innovation Promotion Association CAS(No.2018170)。
文摘Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.
基金supported by Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515012015supported in part by the National Natural Science Foundation of China under Grant 62201336+4 种基金in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515011541supported in part by the National Natural Science Foundation of China under Grant 62371344in part by the Fundamental Research Funds for the Central Universitiessupported in part by Knowledge Innovation Program of Wuhan-Shuguang Project under Grant 2023010201020316in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515010247。
文摘In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinforcement learning(DRL),significant progress has been made in the field of network optimization as DRL holds great promise for improving network performance and efficiency.In this work,our focus delves into the intricate challenge of joint cooperation clustering and downlink power control within CF-mMIMO networks.Leveraging the potent deep deterministic policy gradient(DDPG)algorithm,our objective is to maximize the proportional fairness(PF)for user rates,thereby aiming to achieve optimal network performance and resource utilization.Moreover,we harness the concept of“divide and conquer”strategy,introducing two innovative methods termed alternating DDPG(A-DDPG)and hierarchical DDPG(H-DDPG).These approaches aim to decompose the intricate joint optimization problem into more manageable sub-problems,thereby facilitating a more efficient resolution process.Our findings unequivo-cally showcase the superior efficacy of our proposed DDPG approach over the baseline schemes in both clustering and downlink power control.Furthermore,the A-DDPG and H-DDPG obtain higher performance gain than DDPG with lower computational complexity.
基金the National Natural Science Foundation of China (60532030).
文摘When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (Silt) and improve the system performance. The existing problems about DS-CDMA outer loop power control for multi-service are introduced and the power control theoretical model is analyzed. System simulation is adopted on how to obtain the theoretical performance and parameter optimization of the power control algorithm. The OLPC algorithm is improved and the performance comparisons between the old algorithm and the improved algorithm are given. The results show good performance of the improved OLPC algorithm and prove the validity of the improved method for multi-service.
文摘Today the high quality power supply is of essential in the economic development in a country. With the development of modem power systems and increasing demand for power supply, the electric power industry is facing a great challenge in meeting the increased load demand with highest reliability and security with minimum transmission expenditure. Power system stability analysis and control is one of the most important issues in power systems. The problem becomes more and more serious in power systems with the development of modem power systems. The ability of a power system
基金“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002).
文摘This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金supported in part by the National Magnetic Confinement Fusion Science Program(No.2015GB101001)the National Natural Science Foundation of China(Nos.11375236 and11375235)
文摘Ion cyclotron wave resonance heating(ICRH) is one of the most important auxiliary methods to heat plasma in the Experimental Advanced Superconducting Tokamak(EAST). Several megawatts of power is transmitted through separate coaxial lines and coupled with the plasma through arrays of loop antennas. The parameters of the ICRH system, including the injected power and phasing between antenna straps, are critical to the coupling efficiency of the power as well as the resulting impact on the heating efficiency. In this paper, we present a system for feedback control of the phase between the current straps and the ICRH power on EAST. The feedback control system was tested using both a matched dummy load and a plasma load, and it successfully maintained stable operation in the 2016 EAST campaign. Good control of the injected power and wave phases was achieved during edgelocalized mode operation.
文摘In the fifth generation(5G)wireless system,a closed-loop power control(CLPC)scheme based on deep Q learning network(DQN)is introduced to intelligently adjust the transmit power of the base station(BS),which can improve the user equipment(UE)received signal to interference plus noise ratio(SINR)to a target threshold range.However,the selected power control(PC)action in DQN is not accurately matched the fluctuations of the wireless environment.Since the experience replay characteristic of the conventional DQN scheme leads to a possibility of insufficient training in the target deep neural network(DNN).As a result,the Q-value of the sub-optimal PC action exceed the optimal one.To solve this problem,we propose the improved DQN scheme.In the proposed scheme,we add an additional DNN to the conventional DQN,and set a shorter training interval to speed up the training of the DNN in order to fully train it.Finally,the proposed scheme can ensure that the Q value of the optimal action remains maximum.After multiple episodes of training,the proposed scheme can generate more accurate PC actions to match the fluctuations of the wireless environment.As a result,the UE received SINR can achieve the target threshold range faster and keep more stable.The simulation results prove that the proposed scheme outperforms the conventional schemes.
基金supported by National Natural Science Foundation of China (Grant No. 60704025)
文摘The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.
基金Project(51007042) supported by the National Natural Science Foundation of China
文摘Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(61673161)the Natural Science Foundation of Jiangsu Province of China(BK20161510)+2 种基金the Fundamental Research Funds for the Central Universities of China(2017B13914)the 111 Project(B14022)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.
文摘This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.
基金Supported by Project of Philips Research (2000-109)
文摘Current uplink power control algorithm of code division multiple access (CDMA) time division duplex(TDD) system contains signal-to-interference-ratio(SIR) and interference measurement, which is based on history information. However, the adjustment of transmission power of one user equipment(UE) will affect SIR of the others, because the power control is done independently of the power adjustment of other UE's. So the convergence speed of power control is not fast and the system performance degrades. In the proposed algorithm, all UE's assigned in same time slot adjust their transmission power based on current information, which takes into account the adjustments of transmission power of all UE's. The simulation results indicated that the proposed algorithm outperforms the old algorithm.
文摘Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(N200904)the Nanjing University of Aeronautics and Astronautics (NUAA) Research Funding (NS2010113)the National Natural Science Foundation of China (61172077)
文摘Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.
基金Project supported by the National Science Foundation for Creative Research Groups (Grant No.60521002), and the National Key Technologies R&D Program (Grant No.2005BA908B02)
文摘An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against link gain changes, and outperforms the reference algorithms.