Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should ...Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.展开更多
To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity mu...To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity multiuser detection algorithm with recursively successive zero-forcing and successive interference cancellation(RSZF-SIC) based on nullspace is proposed. The RSZF process based on the block diagonalization(BD) technique eliminates the co-channel interference(CCI) by a recursive method based on the nullspace orthogonal theorem. The SIC process detects the user signals respectively with the reasonable user detection sequence based on the results of the RSZF process. The computational complexity of the proposed algorithm is effectively reduced by reducing the total number of singular value decomposition(SVD) operations and the dimension of the SVD matrix in the recursive procedure. The performance of the proposed algorithm is improved in terms of bit error rate and sum capacity of the system, especially in the highSNR regime.展开更多
Existing works have addressed the interference mitigation by any two of the three approaches: link scheduling, power control, and successive interference cancellation(SIC). In this paper, we integrate the above approa...Existing works have addressed the interference mitigation by any two of the three approaches: link scheduling, power control, and successive interference cancellation(SIC). In this paper, we integrate the above approaches to further improve the spectral efficiency of the wireless networks and consider the max-min fairness to guarantee the transmission demand of the worst-case link. We formulate the link scheduling with joint power control and SIC(PCSIC) problem as a mixed-integer non-linear programming(MINLP), which has been proven to be NP-complete. Consequently, we propose an iterative algorithm to tackle the problem by decomposing it into a series of linear subproblems, and then the analysis shows that the algorithm has high complexity in the worst case. In order to reduce the computational complexity, we have further devised a two-stage algorithm with polynomial-time complexity. Numerical results show the performance improvements of our proposed algorithms in terms of the network throughput and power consumption compared with the link scheduling scheme only with SIC.展开更多
Direct-sequence code-division multiple access (CDMA) is considered for multiuser communication network in underwater acoustic channel, where extended multipath and rapid time-variability are encountered. To track and ...Direct-sequence code-division multiple access (CDMA) is considered for multiuser communication network in underwater acoustic channel, where extended multipath and rapid time-variability are encountered. To track and compensate the channel distortion, a decentralized hypothesis-feedback equalization (HFE) algorithm based on chip-rate update has been used[1]. But due to multiple access interference (MAI), its performance suffers degradation. For this reason, successive interference cancellation hypothesis-feedback equalization (SIC-HFE) algorithm is proposed, which combines the capabilities of HFE to track the time-varying channel and SIC implemented by cross-over feedback filters to cancel out the MAI effects between users. Simulation and experiment results show that the proposed algorithm can significantly improve the performance of asynchronous multiuser CDMA underwater communication system.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62171235 and Grant 62171237in part by the Qinglan Project of Jiangsu Provincein part by the Open Research Foundation of National Mobile Communications Research Laboratory of Southeast University under Grant 2023D01.
文摘Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 201149)Postdoctoral Science-Research Foundation of Heilongjiang (Grant No. LBH-Q11108)the National Natural Science Foundation of China (61071104)
文摘To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity multiuser detection algorithm with recursively successive zero-forcing and successive interference cancellation(RSZF-SIC) based on nullspace is proposed. The RSZF process based on the block diagonalization(BD) technique eliminates the co-channel interference(CCI) by a recursive method based on the nullspace orthogonal theorem. The SIC process detects the user signals respectively with the reasonable user detection sequence based on the results of the RSZF process. The computational complexity of the proposed algorithm is effectively reduced by reducing the total number of singular value decomposition(SVD) operations and the dimension of the SVD matrix in the recursive procedure. The performance of the proposed algorithm is improved in terms of bit error rate and sum capacity of the system, especially in the highSNR regime.
基金supported by National Natural Science Foundation of China(Grant Nos.61231008,61172079,61201141,61301176,91338114)Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Fund Project+1 种基金Programme of Introducing Talents of Discipline to Universities(Grant No.B08038)National High Technology Research and Development Program of China(Grant No.2014AA01A701)
文摘Existing works have addressed the interference mitigation by any two of the three approaches: link scheduling, power control, and successive interference cancellation(SIC). In this paper, we integrate the above approaches to further improve the spectral efficiency of the wireless networks and consider the max-min fairness to guarantee the transmission demand of the worst-case link. We formulate the link scheduling with joint power control and SIC(PCSIC) problem as a mixed-integer non-linear programming(MINLP), which has been proven to be NP-complete. Consequently, we propose an iterative algorithm to tackle the problem by decomposing it into a series of linear subproblems, and then the analysis shows that the algorithm has high complexity in the worst case. In order to reduce the computational complexity, we have further devised a two-stage algorithm with polynomial-time complexity. Numerical results show the performance improvements of our proposed algorithms in terms of the network throughput and power consumption compared with the link scheduling scheme only with SIC.
基金National Natural Science Foundation of China (60572098)
文摘Direct-sequence code-division multiple access (CDMA) is considered for multiuser communication network in underwater acoustic channel, where extended multipath and rapid time-variability are encountered. To track and compensate the channel distortion, a decentralized hypothesis-feedback equalization (HFE) algorithm based on chip-rate update has been used[1]. But due to multiple access interference (MAI), its performance suffers degradation. For this reason, successive interference cancellation hypothesis-feedback equalization (SIC-HFE) algorithm is proposed, which combines the capabilities of HFE to track the time-varying channel and SIC implemented by cross-over feedback filters to cancel out the MAI effects between users. Simulation and experiment results show that the proposed algorithm can significantly improve the performance of asynchronous multiuser CDMA underwater communication system.