A novel structure of ideal ohmic contact p^+ (SiGeC)-n^- -n^+ diodes with three-step graded doping concentration in the base region is presented, and the changing doping concentration gradient is also optimized. U...A novel structure of ideal ohmic contact p^+ (SiGeC)-n^- -n^+ diodes with three-step graded doping concentration in the base region is presented, and the changing doping concentration gradient is also optimized. Using MEDICI, the physical parameter models applicable for SiGeC/Si heterojunction power diodes are given. The simulation results indicate that the diodes with graded doping concentration in the base region not only have the merit of fast and soft reverse recovery but also double reverse blocking voltage,and their forward conducting voltage has dropped to some extent,compared to the diodes with constant doping concentration in the base region. The new structure achieves a good trade-off in Qs-Vf-Ir ,and its combination of properties is superior to ideal ohmic contact diodes and conventional diodes.展开更多
We report the fabrication and characterization of a vertical pn power diode which is realized using two separate epitaxial-growth mechanisms: (a) p-GaN over p-(4H)SiC, and (b) p-GaN over n-(4H)SiC with A1N as...We report the fabrication and characterization of a vertical pn power diode which is realized using two separate epitaxial-growth mechanisms: (a) p-GaN over p-(4H)SiC, and (b) p-GaN over n-(4H)SiC with A1N as the interface layer. In all of the cases, n+-doped (4H)SiC serves as the cathode substrate. Pd(200 A)/Au(10000 A) is used for the anode contact while Ni(1000A) is used for the bottom cathode contact. The measured forward drop of the pn diode with A1N as the interface material is found to be around 5.1 V; whereas, it is 3 V for the other sample structure. The measured reverse-blocking voltage is found to be greater than 200 V.展开更多
Using p~+-type crystalline Si with n~+-type nanocrystalline Si(nc-Si) and n~+-type crystalline Si with p~+-type nc-Si mosaic structures as electrodes,a type of power diode was prepared with epitaxial technique a...Using p~+-type crystalline Si with n~+-type nanocrystalline Si(nc-Si) and n~+-type crystalline Si with p~+-type nc-Si mosaic structures as electrodes,a type of power diode was prepared with epitaxial technique and plasmaenhanced chemical vapor deposition(PECVD) method.Firstly,the basic p~+-n^--n~+-type Si diode was fabricated by epitaxially growing p~+- and n~+-type layers on two sides of a lightly doped n^--type Si wafer respectively.Secondly,heavily phosphorus-doped Si film was deposited with PECVD on the lithography mask etched p~+-type Si side of the basic device to form a component with mosaic anode.Thirdly,heavily boron-doped Si film was deposited on the etched n~+-type Si side of the second device to form a diode with mosaic anode and mosaic cathode.The images of high resolution transmission electronic microscope and patterns of X-ray diffraction reveal nanocrystallization in the phosphorus- and boron-deposited films.Electrical measurements such as capacitancevoltage relation,current-voltage feature and reverse recovery waveform were carried out to clarify the performance of prepared devices.The important roles of(n^-)Si/(p~+)nc-Si and(n^-)Si/(n~+)nc-Si junctions in the static and dynamic conduction processes in operating diodes were investigated.The performance of mosaic devices was compared to that of a basic one.展开更多
Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of...Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of the phase-change heat sink for high power (HP) light emitting diode (LED). The experimental results show that two different structures of rectangular- and triangular-shaped micro-grooves are formed in P-E process. When P-E depth (ap), interval of helical grooves (dp) and rotation speed (n) are 0.12 ram, 0.2 mm and 100 r/min, respectively, the boiling structures of triangular-shaped grooves with the fin height of 0.15 mm that has good evaporation performance are obtained. The shapes of the boiling structures are restricted by dp and ap, and dp is determined by n and amount of feed (f). The ploughing speed has an important influence on the formation of groove structure in P-E process.展开更多
Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation.The mechanism driving the degradation is stron...Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation.The mechanism driving the degradation is strongly related to the existence of localized thermal stresses generated during the laser operation.These thermal stresses can overcome the yield strength of the materials forming the active part of the laser diode.Different factors contribute to reduce the laser power threshold for degradation.Among them the thermal transport across the laser structure constitutes a critical issue for the reliability of the device.展开更多
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr...A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in v...In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in various power electronic systems.In order to improve the performance of the 4H-SiC power device,a novel ultrahigh-voltage(UHV)4H-SiC merged p-type/intrinsic/n-type(PiN)Schottky(MPS)diode with three-dimensional(3D)p-type buried layers(PBL)(3D-PBL MPS)is proposed and investigated by numerical simulation.The static forward conduction characteristics of the 3D-PBL MPS are similar to those of the conventional 4H-SiC MPS diode without the PBL(PBL-free MPS).However,when the 3D-PBL MPS is in the reverse blocking state,the 3D PBL can transfer the peak electric field(E_(peak))into a deeper position in the body of the epitaxial layer,and enhance the ability of the device to shield the high electric field at the Schottky contact interface(E_(S)),so that the reverse leakage current of the 3D-PBL MPS at 10 kV is only 0.002%of that of the PBL-free MPS.Meanwhile,the novel 3D-PBL MPS has overcome the disadvantage in the 4H-SiC MPS diode with the two-dimensional PBL(2D-PBL MPS),and the forward conduction characteristic of the 3D-PBL MPS will not get degenerated after the device converts from the reverse blocking state to the forward conduction state because of the special depletion layer variation mechanism depending on the 3D PBL.All the simulation results show that the novel UHV 3D-PBL MPS has excellent device performance.展开更多
This paper presents a cascode configuration synchronous rectifier device based on silicon MOSFET and Schottky diode,which can replace traditional power diode directly.This structure has self-driven ability with simple...This paper presents a cascode configuration synchronous rectifier device based on silicon MOSFET and Schottky diode,which can replace traditional power diode directly.This structure has self-driven ability with simple external circuit,and the conduction characteristic is preferable to a power diode.Static characterization and switching behavior analysis of proposed structure are conducted in this paper.The switching process is illustrated in detail using real model which considers the parasitic inductances and the nonlinearity of junction capacitors.The real time internal voltage and current value during switching transition are deduced with the equivalent circuit.To validate the analysis,two voltage specification rectifiers are built.Finally,double-pulse test results and the practical design example verify the performance advantages of proposed structure.展开更多
We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical ...We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical lens group with different focus lengths. The bare fibers were mechanically bundled through high temperature ultraviolet adhesive after the coatings of the 127 fibers were stripped. The diameter of the fiber bundle was 6 mm. The total output power of such a bundle was 152 W with electro-optical conversion efficiency of 27.56%and the RMS power instability was less than ±1% within 3 h.展开更多
In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by met...In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by metal organic chemical vapor deposition (MOCVD). For the devices with 100-ttm-wide stripe and 1000-/zm-long cavity under continuous-wave (CW) operation condition, the typical threshold current is 190 mA, the slope efficiency is 1.31 W/A, the wall-plug efficiency reaches 63%, and the maximum output power reaches higher than 7 W. And the internal absorption value decreases to 1.5 cm^-1.展开更多
We experimentally demonstrate an underwater optical wireless power transfer (OWPT) using a laser diode (LD) as a power transmitter. We investigate the characteristics of a solar cell and a photodiode (PD) as a p...We experimentally demonstrate an underwater optical wireless power transfer (OWPT) using a laser diode (LD) as a power transmitter. We investigate the characteristics of a solar cell and a photodiode (PD) as a power receiver. We optimize the LD, the PD, and the solar cell to achieve the maximum transfer efficiency. The maxi- mum transfer efficiency of the back-to-back OWPT is measured as 4.3% with the PD receiver. Subsequently, we demonstrate the OWPT in tap and sea water. Our result shows an attenuation of 3 dB/m in sea water.展开更多
In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (8...In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (85℃) were performed on silicone/YAG phosphor composites. The luminescence properties of silicone/phosphor composites are monitored by a fluorescence spectrometer. The results show that high temperature could result in an increase in conversion efficiency of composites during the early aging stage and red shift of YAG phosphor; and high humidity could result in a significant decrease in conversion efficiency of composites while having a small influence upon the optimal excitation wavelength of the YAG phosphor.展开更多
文摘A novel structure of ideal ohmic contact p^+ (SiGeC)-n^- -n^+ diodes with three-step graded doping concentration in the base region is presented, and the changing doping concentration gradient is also optimized. Using MEDICI, the physical parameter models applicable for SiGeC/Si heterojunction power diodes are given. The simulation results indicate that the diodes with graded doping concentration in the base region not only have the merit of fast and soft reverse recovery but also double reverse blocking voltage,and their forward conducting voltage has dropped to some extent,compared to the diodes with constant doping concentration in the base region. The new structure achieves a good trade-off in Qs-Vf-Ir ,and its combination of properties is superior to ideal ohmic contact diodes and conventional diodes.
基金Project supported by the US National Science Foundation(No.0823983)
文摘We report the fabrication and characterization of a vertical pn power diode which is realized using two separate epitaxial-growth mechanisms: (a) p-GaN over p-(4H)SiC, and (b) p-GaN over n-(4H)SiC with A1N as the interface layer. In all of the cases, n+-doped (4H)SiC serves as the cathode substrate. Pd(200 A)/Au(10000 A) is used for the anode contact while Ni(1000A) is used for the bottom cathode contact. The measured forward drop of the pn diode with A1N as the interface material is found to be around 5.1 V; whereas, it is 3 V for the other sample structure. The measured reverse-blocking voltage is found to be greater than 200 V.
基金supported by the National Natural Science Foundation of China(No.61274006)
文摘Using p~+-type crystalline Si with n~+-type nanocrystalline Si(nc-Si) and n~+-type crystalline Si with p~+-type nc-Si mosaic structures as electrodes,a type of power diode was prepared with epitaxial technique and plasmaenhanced chemical vapor deposition(PECVD) method.Firstly,the basic p~+-n^--n~+-type Si diode was fabricated by epitaxially growing p~+- and n~+-type layers on two sides of a lightly doped n^--type Si wafer respectively.Secondly,heavily phosphorus-doped Si film was deposited with PECVD on the lithography mask etched p~+-type Si side of the basic device to form a component with mosaic anode.Thirdly,heavily boron-doped Si film was deposited on the etched n~+-type Si side of the second device to form a diode with mosaic anode and mosaic cathode.The images of high resolution transmission electronic microscope and patterns of X-ray diffraction reveal nanocrystallization in the phosphorus- and boron-deposited films.Electrical measurements such as capacitancevoltage relation,current-voltage feature and reverse recovery waveform were carried out to clarify the performance of prepared devices.The important roles of(n^-)Si/(p~+)nc-Si and(n^-)Si/(n~+)nc-Si junctions in the static and dynamic conduction processes in operating diodes were investigated.The performance of mosaic devices was compared to that of a basic one.
基金Projects(50436010, 50675070) supported by the National Natural Science Foundation of China Project(07118064) supported by the Natural Science Foundation of Guangdong Province, China+1 种基金 Project(U0834002) supported by the Joint Fund of NSFC-Guangdong of ChinaProjects(SY200806300289A, JSA200903190981A) supported by Shenzhen Scientific Program, China
文摘Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of the phase-change heat sink for high power (HP) light emitting diode (LED). The experimental results show that two different structures of rectangular- and triangular-shaped micro-grooves are formed in P-E process. When P-E depth (ap), interval of helical grooves (dp) and rotation speed (n) are 0.12 ram, 0.2 mm and 100 r/min, respectively, the boiling structures of triangular-shaped grooves with the fin height of 0.15 mm that has good evaporation performance are obtained. The shapes of the boiling structures are restricted by dp and ap, and dp is determined by n and amount of feed (f). The ploughing speed has an important influence on the formation of groove structure in P-E process.
基金funded by the Spanish Government(MAT-2010-20441-C02)
文摘Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation.The mechanism driving the degradation is strongly related to the existence of localized thermal stresses generated during the laser operation.These thermal stresses can overcome the yield strength of the materials forming the active part of the laser diode.Different factors contribute to reduce the laser power threshold for degradation.Among them the thermal transport across the laser structure constitutes a critical issue for the reliability of the device.
基金Projects(50436010,50930005)supported by the National Natural Science Foundation of ChinaProject(U0834002)supported by the Joint Fund of NSFC-Guangdong of China
文摘A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金Project(F2020210016) supported by the Natural Science Foundation of Hebei,ChinaProject(620004153) supported by the National Natural Science Foundation of China。
文摘In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in various power electronic systems.In order to improve the performance of the 4H-SiC power device,a novel ultrahigh-voltage(UHV)4H-SiC merged p-type/intrinsic/n-type(PiN)Schottky(MPS)diode with three-dimensional(3D)p-type buried layers(PBL)(3D-PBL MPS)is proposed and investigated by numerical simulation.The static forward conduction characteristics of the 3D-PBL MPS are similar to those of the conventional 4H-SiC MPS diode without the PBL(PBL-free MPS).However,when the 3D-PBL MPS is in the reverse blocking state,the 3D PBL can transfer the peak electric field(E_(peak))into a deeper position in the body of the epitaxial layer,and enhance the ability of the device to shield the high electric field at the Schottky contact interface(E_(S)),so that the reverse leakage current of the 3D-PBL MPS at 10 kV is only 0.002%of that of the PBL-free MPS.Meanwhile,the novel 3D-PBL MPS has overcome the disadvantage in the 4H-SiC MPS diode with the two-dimensional PBL(2D-PBL MPS),and the forward conduction characteristic of the 3D-PBL MPS will not get degenerated after the device converts from the reverse blocking state to the forward conduction state because of the special depletion layer variation mechanism depending on the 3D PBL.All the simulation results show that the novel UHV 3D-PBL MPS has excellent device performance.
基金supported in part by the National Natural Science Foundation of China (No.51777093)
文摘This paper presents a cascode configuration synchronous rectifier device based on silicon MOSFET and Schottky diode,which can replace traditional power diode directly.This structure has self-driven ability with simple external circuit,and the conduction characteristic is preferable to a power diode.Static characterization and switching behavior analysis of proposed structure are conducted in this paper.The switching process is illustrated in detail using real model which considers the parasitic inductances and the nonlinearity of junction capacitors.The real time internal voltage and current value during switching transition are deduced with the equivalent circuit.To validate the analysis,two voltage specification rectifiers are built.Finally,double-pulse test results and the practical design example verify the performance advantages of proposed structure.
基金Project supported by the Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing the National High Technology Research and Development Program of China(No.2014AA032607)+1 种基金the National Natural Science Foundation of China(Nos.61404135,61405186,61308032,61308033)the National Key R&D Program of China(Nos.2016YFB0401804,2016YFB0402002)
文摘We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical lens group with different focus lengths. The bare fibers were mechanically bundled through high temperature ultraviolet adhesive after the coatings of the 127 fibers were stripped. The diameter of the fiber bundle was 6 mm. The total output power of such a bundle was 152 W with electro-optical conversion efficiency of 27.56%and the RMS power instability was less than ±1% within 3 h.
基金supported by the National Natural Science Foundation of China (No.50472068)the Program for New Century Excellent Talents in University
文摘In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by metal organic chemical vapor deposition (MOCVD). For the devices with 100-ttm-wide stripe and 1000-/zm-long cavity under continuous-wave (CW) operation condition, the typical threshold current is 190 mA, the slope efficiency is 1.31 W/A, the wall-plug efficiency reaches 63%, and the maximum output power reaches higher than 7 W. And the internal absorption value decreases to 1.5 cm^-1.
基金supported by the Kyungsung University Research Grants in 2017
文摘We experimentally demonstrate an underwater optical wireless power transfer (OWPT) using a laser diode (LD) as a power transmitter. We investigate the characteristics of a solar cell and a photodiode (PD) as a power receiver. We optimize the LD, the PD, and the solar cell to achieve the maximum transfer efficiency. The maxi- mum transfer efficiency of the back-to-back OWPT is measured as 4.3% with the PD receiver. Subsequently, we demonstrate the OWPT in tap and sea water. Our result shows an attenuation of 3 dB/m in sea water.
基金Project supported by the Key Project of the National Natural Science Foundation of China(No.50835005)the National High Technology Research and Development Program of China(No.2009AA03A1A3)
文摘In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (85℃) were performed on silicone/YAG phosphor composites. The luminescence properties of silicone/phosphor composites are monitored by a fluorescence spectrometer. The results show that high temperature could result in an increase in conversion efficiency of composites during the early aging stage and red shift of YAG phosphor; and high humidity could result in a significant decrease in conversion efficiency of composites while having a small influence upon the optimal excitation wavelength of the YAG phosphor.