Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information...Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information for each other, but each user node has the incentive to consume his power solely to decrease its own symbol error rate (SER) at the receiver. In this paper, we propose a fair and efficient PA scheme for the decode-and-forward cooperation protocol in selfish cooperative relay networks. We formulate this PA problem as a two-user cooperative bargaining game, and use Nash bargaining solution (NBS) to achieve a win-win strategy for both partner users. Simulation results indicate that the NBS is fair in that the degree of cooperation of a user only depends on how much contribution its partner can make to decrease its SER at the receiver, and efficient in the sense that the SER performance of both users could be improved through the game.展开更多
To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a comm...To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a common payoff function named collaborative detection probability of netted radar countermeasures.Comparing with traditional optimization methods,an obvious advantage of game-based model is an adequate consideration of the opposite potential strategy.This model guarantees a more effective allocation of the both sides′power resource and a higher combat efficiency during a combat.Furthermore,an analysis of the complexity of the proposed model is given and a hierarchical processing method is presented to simplify the calculating process.Simulation results show the validity of the proposed scheme.展开更多
Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink...Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink node called OHS. The power and admission control problem in HWSNs is comsidered to improve its power efficiency and link reliability. This problem is modeled as a non-cooperative game in which the active OHSs are con- sidered as players. By applying a double-pricing scheme in the definition of OHSs' utility function, a Nash Equilibrium solution with network properties is derived. Besides, a distributed algorithm is also proposed to show the dynamic processes to achieve Nash Equilibrium. Finally, the simulation results demonstrate the effec- tiveness of the proposed algorithm.展开更多
In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. A...In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.展开更多
Spectrum sharing is an essential enabling functionality to allow the coexistence between primary user (PU) and cognitive users (CUs) in the same frequency band. In this paper, we consider joint rate and power allocati...Spectrum sharing is an essential enabling functionality to allow the coexistence between primary user (PU) and cognitive users (CUs) in the same frequency band. In this paper, we consider joint rate and power allocation in cognitive radio networks by using game theory. The optimum rates and powers are obtained by iteratively maximizing each CU’s utility function, which is designed to guarantee the protection of primary user (PU) as well as the quality of service (QoS) of CUs. In addition, transmission rates of some CUs should be adjusted if corresponding actual signal-to-interference-plus-noise ratio (SINR) falls below the target SINR. Based on the modified transmission rate for each CU, distributed power allocation is introduced to further reduce the total power consumption. Simulation results are provided to demonstrate that the proposed algorithm achieves a significant gain in power saving.展开更多
In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative ga...In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.展开更多
Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is pr...Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is proposed using Game Theory (GT) and Neural Networks (NN). Also, due to the stochastic behavior of power markets and generators’ forced outages, Monte Carlo Simulation (MCS) is used for reliability evaluation. Generation reliability focuses merely on the interaction between generation complex and load. Therefore, in the research, based on the behavior of players in the market and using GT, two outcomes are considered: cooperation and non-cooperation. The proposed method is assessed on IEEE-Reliability Test System with satisfactory results. Loss of Load Expectation (LOLE) is used as the reliability index and the results show generation reliability in cooperation market is better than non-cooperation outcome.展开更多
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
基金supported by National Natural Science Foundation of China (No. 60972059)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)+3 种基金Fundamental Research Funds for the Central Universities of China (Nos. 2010QNA27 and 2011QNB26)China Postdoctoral Science Foundation (No. 20100481185)the Ph. D. Programs Foundation of Ministry of Education of China (Nos. 20090095120013 and 20110095120006)Talent Introduction Program, and Young Teacher Sailing Program of China University of Mining and Technology
文摘Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information for each other, but each user node has the incentive to consume his power solely to decrease its own symbol error rate (SER) at the receiver. In this paper, we propose a fair and efficient PA scheme for the decode-and-forward cooperation protocol in selfish cooperative relay networks. We formulate this PA problem as a two-user cooperative bargaining game, and use Nash bargaining solution (NBS) to achieve a win-win strategy for both partner users. Simulation results indicate that the NBS is fair in that the degree of cooperation of a user only depends on how much contribution its partner can make to decrease its SER at the receiver, and efficient in the sense that the SER performance of both users could be improved through the game.
基金Supported by the National Natural Science Foundation of China(60774064,61305133)the National Research Foundation for the Doctoral Program of Higher Education of China(20116102110026)+1 种基金the Aerospace Technology Support Foundation(2013-HT-XGD)the Aeronautical Science Foundation of China(2013zc53037)
文摘To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a common payoff function named collaborative detection probability of netted radar countermeasures.Comparing with traditional optimization methods,an obvious advantage of game-based model is an adequate consideration of the opposite potential strategy.This model guarantees a more effective allocation of the both sides′power resource and a higher combat efficiency during a combat.Furthermore,an analysis of the complexity of the proposed model is given and a hierarchical processing method is presented to simplify the calculating process.Simulation results show the validity of the proposed scheme.
基金supported by the National Natural Science Foundation of China (7070102571071105)+2 种基金the Program for New Century Excellent Talents in Universities of China (NCET-08-0396)the National Science Fund for Distinguished Young Scholars of China (70925005)the Program for Changjiang Scholars and Innovative Research Team in University (IRT/028)
文摘Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink node called OHS. The power and admission control problem in HWSNs is comsidered to improve its power efficiency and link reliability. This problem is modeled as a non-cooperative game in which the active OHSs are con- sidered as players. By applying a double-pricing scheme in the definition of OHSs' utility function, a Nash Equilibrium solution with network properties is derived. Besides, a distributed algorithm is also proposed to show the dynamic processes to achieve Nash Equilibrium. Finally, the simulation results demonstrate the effec- tiveness of the proposed algorithm.
基金supported by the Beijing Natural Science Foundation (4142049)863 project No. 2014AA01A701the Fundamental Research Funds for Central Universities of China No. 2015XS07
文摘In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.
文摘Spectrum sharing is an essential enabling functionality to allow the coexistence between primary user (PU) and cognitive users (CUs) in the same frequency band. In this paper, we consider joint rate and power allocation in cognitive radio networks by using game theory. The optimum rates and powers are obtained by iteratively maximizing each CU’s utility function, which is designed to guarantee the protection of primary user (PU) as well as the quality of service (QoS) of CUs. In addition, transmission rates of some CUs should be adjusted if corresponding actual signal-to-interference-plus-noise ratio (SINR) falls below the target SINR. Based on the modified transmission rate for each CU, distributed power allocation is introduced to further reduce the total power consumption. Simulation results are provided to demonstrate that the proposed algorithm achieves a significant gain in power saving.
基金the National Natural Science Foundation of China (No.60372055)the National Doctoral Foundation of China (No.20030698027)
文摘In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.
文摘Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is proposed using Game Theory (GT) and Neural Networks (NN). Also, due to the stochastic behavior of power markets and generators’ forced outages, Monte Carlo Simulation (MCS) is used for reliability evaluation. Generation reliability focuses merely on the interaction between generation complex and load. Therefore, in the research, based on the behavior of players in the market and using GT, two outcomes are considered: cooperation and non-cooperation. The proposed method is assessed on IEEE-Reliability Test System with satisfactory results. Loss of Load Expectation (LOLE) is used as the reliability index and the results show generation reliability in cooperation market is better than non-cooperation outcome.