The Taylor model arithmetic is introduced to deal with uncertainty.The uncertainty of model parameters is described by Taylor models and each variable in functions is replaced with the Taylor model(TM).Thus,time domai...The Taylor model arithmetic is introduced to deal with uncertainty.The uncertainty of model parameters is described by Taylor models and each variable in functions is replaced with the Taylor model(TM).Thus,time domain simulation under uncertainty is transformed to the integration of TM-based differential equations.In this paper,the Taylor series method is employed to compute differential equations;moreover,power system time domain simulation under uncertainty based on Taylor model method is presented.This method allows a rigorous estimation of the influence of either form of uncertainty and only needs one simulation.It is computationally fast compared with the Monte Carlo method,which is another technique for uncertainty analysis.The proposed method has been tested on the 39-bus New England system.The test results illustrate the effectiveness and practical value of the approach by comparing with the results of Monte Carlo simulation and traditional time domain simulation.展开更多
Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the developme...Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine(SVM) method.However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear.This paper proposes a new strategy to solve the shortcomings of traditional SVM,which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms.In this strategy, two improved SVMs, which are called aggressive support vector machine(ASVM) and conservative support vector machine(CSVM), are proposed to improve the accuracy of the classification.And two improved SVMs can ensure the stability or instability of the power system in most cases.For the small amount of cases with undetermined stability, a new concept of grey region(GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system.Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.展开更多
A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current en- ergy functions. A transient energy function includin...A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current en- ergy functions. A transient energy function including the induction motor model is derived using the method. The unintegrable term is dealt with to get an approxi- mate energy function. Simulations in a 3-bus system and in the WSCC 4-generator system verify the validity of the proposed energy function. The function can be applied to direct transient stability analysis of multi-machine large power systems and provides a tool for analysis of the interaction between the generator angle stability and the load voltage stability.展开更多
This paper presents a Modified Power Series Method (MPSM) for the solution of delay differential equations. Unlike the traditional power series method which is applied to solve only linear differential equations, this...This paper presents a Modified Power Series Method (MPSM) for the solution of delay differential equations. Unlike the traditional power series method which is applied to solve only linear differential equations, this new approach is applicable to both linear and nonlinear problems. The method produces a system of algebraic equations which is solved to determine the coefficients in the trial solution. The method provides the solution in form of a rapid convergent series. The obtained results for numerical examples demonstrate the reliability and efficiency of the method.展开更多
动态安全域(DSR)是电力系统稳定分析的重要内容,实用动态安全域(PDSR)由描述各节点注入功率上、下限的垂直于坐标轴的超平面和描述暂态稳定性临界点的超平面围成。结合轨迹灵敏度法和高阶Taylor技术,推导轨迹灵敏度的高阶Taylor级数递...动态安全域(DSR)是电力系统稳定分析的重要内容,实用动态安全域(PDSR)由描述各节点注入功率上、下限的垂直于坐标轴的超平面和描述暂态稳定性临界点的超平面围成。结合轨迹灵敏度法和高阶Taylor技术,推导轨迹灵敏度的高阶Taylor级数递推求解形式。基于势能界面(PEBS)法和高阶Taylor级数轨迹灵敏度技术,快速有效地计算能量裕度灵敏度,从而迭代求解临界功率注入点。利用临界功率点的能量裕度灵敏度数值,求解电力系统有功功率注入空间上的PDSR。New England 10机39节点系统的仿真结果验证了所提方法的有效性。展开更多
多步高阶Taylor级数法是电力系统暂态稳定分析的有效工具,但其尚未实现灵活阶数控制和并行计算技术相结合,因此Taylor级数法有待于进一步改进。基于数值稳定域理论,构造了具有较好稳定域的多步变阶Taylor级数法,并结合电力系统暂态稳定...多步高阶Taylor级数法是电力系统暂态稳定分析的有效工具,但其尚未实现灵活阶数控制和并行计算技术相结合,因此Taylor级数法有待于进一步改进。基于数值稳定域理论,构造了具有较好稳定域的多步变阶Taylor级数法,并结合电力系统暂态稳定仿真计算特点,根据计算精度要求实现Taylor级数阶数的灵活控制;同时提出了结合并行技术的高阶Taylor级数的空间并行暂态稳定分析方法。New England 10机39节点算例验证了所提方法数值稳定性好,能消除固定阶数多步Taylor级数法计算冗余,和并行计算结合能有效提高暂态稳定分析效率。展开更多
为提高电力系统暂态稳定分析效率,本文提出了多维阶数控制的多步Taylor级数暂态稳定快速计算方法。该方法基于多步Taylor级数展开理论,针对不同时间常数的机组及不同积分时刻的机组转角状态量,根据时域仿真计算精度建立了转角状态量的...为提高电力系统暂态稳定分析效率,本文提出了多维阶数控制的多步Taylor级数暂态稳定快速计算方法。该方法基于多步Taylor级数展开理论,针对不同时间常数的机组及不同积分时刻的机组转角状态量,根据时域仿真计算精度建立了转角状态量的高阶导数阶数差异化控制策略,并从理论上分析了忽略部分高阶导数对转角轨迹的影响。所提方法可实现状态变量时间和空间上的动态多维导数阶数控制,消除常规Taylor级数法暂态稳定分析的计算冗余。New England 10机39节点算例仿真验证了所提方法可灵活方便地实现Taylor级数法的时空多维阶数控制,能有效提高暂态稳定分析效率。展开更多
Based on the Hamilton' s principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex charac...Based on the Hamilton' s principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex characteristic equation for the viscoelastic circular pipe conveying fluid was obtained by normalized power series method. The effects of dimensionless delay time on the variation relationship between dimensionless complex frequency of the clamped-clamped viscoelastic circular pipe conveying fluid with the Kelvin-Voigt model and dimensionless flow velocity were analyzed. For greater dimensionless delay time, the behavior of the viscoelastic pipe is that the first, second and third mode does not couple, while the pipe behaves divergent instability in the first and second order mode, then single-mode flutter takes place in the first order mode.展开更多
In this paper, we developed a new continuous block method by the method of interpolation and collocation to derive new scheme. We adopted the use of power series as a basis function for approximate solution. We evalua...In this paper, we developed a new continuous block method by the method of interpolation and collocation to derive new scheme. We adopted the use of power series as a basis function for approximate solution. We evaluated at off grid points to get a continuous hybrid multistep method. The continuous hybrid multistep method is solved for the independent solution to yield a continuous block method which is evaluated at selected points to yield a discrete block method. The basic properties of the block method were investigated and found to be consistent, zero stable and convergent. The results were found to compete favorably with the existing methods in terms of accuracy and error bound. In particular, the scheme was found to have a large region of absolute stability. The new method was tested on real life problem namely: Dynamic model.展开更多
Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnect...Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnection Plan is launched by the European Council. For a variety of reasons, it is desirable to keep transmission corridors as slender as possible, i.e. keeping the number of lines as limited as possible, while still keeping adequate stability and power transmission capacity over the corridor. This is true, no matter whether it concerns a green-field project, or if it is a question of expanding an existing transmission corridor into higher power transmission capability. To achieve this, FACTS (flexible AC transmission systems), based on state of the art high power electronics, is a highly useful option, from technical, economical and environmental points of view, to increase the utilization and stability of a transmission system or intertie. The paper presents salient design features as well as benefits of recently installed FACTS devices, more specifically SVC (static var compensators) and series capacitors, for enabling or improving cross-border as well as interregional power transfer in a cost-effective and environmentally friendly way.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50477035).
文摘The Taylor model arithmetic is introduced to deal with uncertainty.The uncertainty of model parameters is described by Taylor models and each variable in functions is replaced with the Taylor model(TM).Thus,time domain simulation under uncertainty is transformed to the integration of TM-based differential equations.In this paper,the Taylor series method is employed to compute differential equations;moreover,power system time domain simulation under uncertainty based on Taylor model method is presented.This method allows a rigorous estimation of the influence of either form of uncertainty and only needs one simulation.It is computationally fast compared with the Monte Carlo method,which is another technique for uncertainty analysis.The proposed method has been tested on the 39-bus New England system.The test results illustrate the effectiveness and practical value of the approach by comparing with the results of Monte Carlo simulation and traditional time domain simulation.
基金supported by Science and Technology Project of State Grid Corporation of ChinaNational Natural Science Foundation of China (No.51777104)China State Key Laboratory of Power System (No.SKLD16Z08)
文摘Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine(SVM) method.However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear.This paper proposes a new strategy to solve the shortcomings of traditional SVM,which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms.In this strategy, two improved SVMs, which are called aggressive support vector machine(ASVM) and conservative support vector machine(CSVM), are proposed to improve the accuracy of the classification.And two improved SVMs can ensure the stability or instability of the power system in most cases.For the small amount of cases with undetermined stability, a new concept of grey region(GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system.Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.
基金Supported by the Special Fund of the National Priority Basic Research of China (Grant No. 2004CB217904)the National Natural Science Foundation of China (Grant No. 50323002)
文摘A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current en- ergy functions. A transient energy function including the induction motor model is derived using the method. The unintegrable term is dealt with to get an approxi- mate energy function. Simulations in a 3-bus system and in the WSCC 4-generator system verify the validity of the proposed energy function. The function can be applied to direct transient stability analysis of multi-machine large power systems and provides a tool for analysis of the interaction between the generator angle stability and the load voltage stability.
文摘This paper presents a Modified Power Series Method (MPSM) for the solution of delay differential equations. Unlike the traditional power series method which is applied to solve only linear differential equations, this new approach is applicable to both linear and nonlinear problems. The method produces a system of algebraic equations which is solved to determine the coefficients in the trial solution. The method provides the solution in form of a rapid convergent series. The obtained results for numerical examples demonstrate the reliability and efficiency of the method.
文摘动态安全域(DSR)是电力系统稳定分析的重要内容,实用动态安全域(PDSR)由描述各节点注入功率上、下限的垂直于坐标轴的超平面和描述暂态稳定性临界点的超平面围成。结合轨迹灵敏度法和高阶Taylor技术,推导轨迹灵敏度的高阶Taylor级数递推求解形式。基于势能界面(PEBS)法和高阶Taylor级数轨迹灵敏度技术,快速有效地计算能量裕度灵敏度,从而迭代求解临界功率注入点。利用临界功率点的能量裕度灵敏度数值,求解电力系统有功功率注入空间上的PDSR。New England 10机39节点系统的仿真结果验证了所提方法的有效性。
文摘多步高阶Taylor级数法是电力系统暂态稳定分析的有效工具,但其尚未实现灵活阶数控制和并行计算技术相结合,因此Taylor级数法有待于进一步改进。基于数值稳定域理论,构造了具有较好稳定域的多步变阶Taylor级数法,并结合电力系统暂态稳定仿真计算特点,根据计算精度要求实现Taylor级数阶数的灵活控制;同时提出了结合并行技术的高阶Taylor级数的空间并行暂态稳定分析方法。New England 10机39节点算例验证了所提方法数值稳定性好,能消除固定阶数多步Taylor级数法计算冗余,和并行计算结合能有效提高暂态稳定分析效率。
文摘为提高电力系统暂态稳定分析效率,本文提出了多维阶数控制的多步Taylor级数暂态稳定快速计算方法。该方法基于多步Taylor级数展开理论,针对不同时间常数的机组及不同积分时刻的机组转角状态量,根据时域仿真计算精度建立了转角状态量的高阶导数阶数差异化控制策略,并从理论上分析了忽略部分高阶导数对转角轨迹的影响。所提方法可实现状态变量时间和空间上的动态多维导数阶数控制,消除常规Taylor级数法暂态稳定分析的计算冗余。New England 10机39节点算例仿真验证了所提方法可灵活方便地实现Taylor级数法的时空多维阶数控制,能有效提高暂态稳定分析效率。
基金Project supported by the Science Foundation of Shaanxi Provincial Commission of Education (No.03JK069)
文摘Based on the Hamilton' s principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex characteristic equation for the viscoelastic circular pipe conveying fluid was obtained by normalized power series method. The effects of dimensionless delay time on the variation relationship between dimensionless complex frequency of the clamped-clamped viscoelastic circular pipe conveying fluid with the Kelvin-Voigt model and dimensionless flow velocity were analyzed. For greater dimensionless delay time, the behavior of the viscoelastic pipe is that the first, second and third mode does not couple, while the pipe behaves divergent instability in the first and second order mode, then single-mode flutter takes place in the first order mode.
文摘In this paper, we developed a new continuous block method by the method of interpolation and collocation to derive new scheme. We adopted the use of power series as a basis function for approximate solution. We evaluated at off grid points to get a continuous hybrid multistep method. The continuous hybrid multistep method is solved for the independent solution to yield a continuous block method which is evaluated at selected points to yield a discrete block method. The basic properties of the block method were investigated and found to be consistent, zero stable and convergent. The results were found to compete favorably with the existing methods in terms of accuracy and error bound. In particular, the scheme was found to have a large region of absolute stability. The new method was tested on real life problem namely: Dynamic model.
文摘Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnection Plan is launched by the European Council. For a variety of reasons, it is desirable to keep transmission corridors as slender as possible, i.e. keeping the number of lines as limited as possible, while still keeping adequate stability and power transmission capacity over the corridor. This is true, no matter whether it concerns a green-field project, or if it is a question of expanding an existing transmission corridor into higher power transmission capability. To achieve this, FACTS (flexible AC transmission systems), based on state of the art high power electronics, is a highly useful option, from technical, economical and environmental points of view, to increase the utilization and stability of a transmission system or intertie. The paper presents salient design features as well as benefits of recently installed FACTS devices, more specifically SVC (static var compensators) and series capacitors, for enabling or improving cross-border as well as interregional power transfer in a cost-effective and environmentally friendly way.