Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the developme...Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine(SVM) method.However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear.This paper proposes a new strategy to solve the shortcomings of traditional SVM,which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms.In this strategy, two improved SVMs, which are called aggressive support vector machine(ASVM) and conservative support vector machine(CSVM), are proposed to improve the accuracy of the classification.And two improved SVMs can ensure the stability or instability of the power system in most cases.For the small amount of cases with undetermined stability, a new concept of grey region(GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system.Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.展开更多
Artificial intelligence technologies provide a newapproach for the real-time transient stability assessment (TSA)of large-scale power systems. In this paper, we propose a datadriven transient stability assessment mode...Artificial intelligence technologies provide a newapproach for the real-time transient stability assessment (TSA)of large-scale power systems. In this paper, we propose a datadriven transient stability assessment model (DTSA) that combinesdifferent AI algorithms. A pre-AI based on the time-delay neuralnetwork is designed to locate the dominant buses for installingthe phase measurement units (PMUs) and reducing the datadimension. A post-AI is designed based on the bidirectionallong-short-term memory network to generate an accurate TSAwith sparse PUM sampling. An online self-check function of theonline TSA’s validity when the power system changes is furtheradded by comparing the results of the pre-AI and the post-AI.The IEEE 39-bus system and the 300-bus AC/DC hybrid systemestablished by referring to China’s existing power system areadopted to verify the proposed method. Results indicate that theproposed method can effectively reduce the computation costswith ensured TSA accuracy as well as provide feedback forits applicability. The DTSA provides new insights for properlyintegrating varied AI algorithms to solve practical problems inmodern power systems.展开更多
A new type of ANN (Artificial Neural Network) structure is introduced, and a nonlinear transformation of the original features is proposed so as to improve the learning covergence of the neural network. This kind of i...A new type of ANN (Artificial Neural Network) structure is introduced, and a nonlinear transformation of the original features is proposed so as to improve the learning covergence of the neural network. This kind of improved ANN is then used to analyse the transient stability of two real power systems. The results show that this method possesses better effectiveness and high convergence speed.展开更多
基金supported by Science and Technology Project of State Grid Corporation of ChinaNational Natural Science Foundation of China (No.51777104)China State Key Laboratory of Power System (No.SKLD16Z08)
文摘Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine(SVM) method.However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear.This paper proposes a new strategy to solve the shortcomings of traditional SVM,which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms.In this strategy, two improved SVMs, which are called aggressive support vector machine(ASVM) and conservative support vector machine(CSVM), are proposed to improve the accuracy of the classification.And two improved SVMs can ensure the stability or instability of the power system in most cases.For the small amount of cases with undetermined stability, a new concept of grey region(GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system.Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.
基金supported by the National Key R&D Program of China(2018AAA0101500).
文摘Artificial intelligence technologies provide a newapproach for the real-time transient stability assessment (TSA)of large-scale power systems. In this paper, we propose a datadriven transient stability assessment model (DTSA) that combinesdifferent AI algorithms. A pre-AI based on the time-delay neuralnetwork is designed to locate the dominant buses for installingthe phase measurement units (PMUs) and reducing the datadimension. A post-AI is designed based on the bidirectionallong-short-term memory network to generate an accurate TSAwith sparse PUM sampling. An online self-check function of theonline TSA’s validity when the power system changes is furtheradded by comparing the results of the pre-AI and the post-AI.The IEEE 39-bus system and the 300-bus AC/DC hybrid systemestablished by referring to China’s existing power system areadopted to verify the proposed method. Results indicate that theproposed method can effectively reduce the computation costswith ensured TSA accuracy as well as provide feedback forits applicability. The DTSA provides new insights for properlyintegrating varied AI algorithms to solve practical problems inmodern power systems.
文摘A new type of ANN (Artificial Neural Network) structure is introduced, and a nonlinear transformation of the original features is proposed so as to improve the learning covergence of the neural network. This kind of improved ANN is then used to analyse the transient stability of two real power systems. The results show that this method possesses better effectiveness and high convergence speed.