The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especi...The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especially in the microchannel slits,flow pattern along the outlet arc and the pressure drop through the whole of microchannel plate were investigated at different power-law flow indexes.The results showed that the velocity profile in the microchannel slits for low flow index fluids was similar to the plug flow and had uniform pattern.Also the power-law fluids with lower flow indexes had lower stagnation zones near the outlet of the microchannel plate.The pressure drop through the microchannel plate showed huge differences between the fluids.The most interesting result was that the pressure drops for power-law fluids were very smaller than that of Newtonian fluids.In addition,the heat transfer of the fluids through the microchannel with different channel numbers in a wide range of Reynolds number was investigated.For power-law fluid with flow index(n=0.4),the Nusselt number increases continuously as the number of channels increases.The results highlight the potential use of using pseudoplastic fluids in the microheat exchangers which can lower the pressure drop and increase the heat transfer efficiency.展开更多
A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. Th...A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.展开更多
Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood rou...Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions.展开更多
The present work delineates the hydrodynamics and thermal characteristics due to mixed convection in the liddriven semi-circular cavity affected by the presence of the adiabatic block at its geometric center for twodi...The present work delineates the hydrodynamics and thermal characteristics due to mixed convection in the liddriven semi-circular cavity affected by the presence of the adiabatic block at its geometric center for twodimensional,steady-state,laminar and for non-Newtonian power-law fluids.The semi-circular cavity has a diameter of D.The horizontal wall/lid is sliding with a uniform horizontal velocity(u=U)and is subjugated to the ambient thermal condition;while the curved surface is subjugated to a higher isothermal temperature.The convective characteristics inside the system is explored for the broad range of Richardson number(0.1≤Ri≤10),Prandtl number(1≤Pr≤100)and non-Newtonian power-law index(0.5≤n≤1.5)at a constant Grashof number of 10~4.Apart from this,the effect of shape(cross-section)of the inserted block,i.e.,circular,square and triangular on heat transfer characteristics has also been explored.It is observed that the shear thickening fluids display better cooling characteristics.Besides,the cavity with immersed triangular block shows better heat transfer results than the circular and square blocks.The deviations observed in the flow and heat transfer characteristics in the cavity by inserting an adiabatic block as compared with cavity without block have been ascertained by calculating normalized Nusselt number(Nu^N).The presence of the block was found to have a diminishing effect on the heat transfer due to convection in the cavity.In the end,the results of the study are summarized in the form of a predictive correlation exhibiting the functional dependence of average Nusselt number with Prandtl number,power-law index,and Richardson number.展开更多
The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immis...The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immiscible power-law fluids through a microtube is studied with consideration of zeta potential difference near the two-liquid interface. The modified Cauchy momentum equation in cylindrical coordinate governing the two-liquid velocity distributions is solved where both peripheral and inner liquids are represented by power-law model. The two-fluid velocity distribution under the combined interaction of power-law rheological effect and circular wall effect is evaluated at different viscosities and different electroosmotic characters of inner and peripheral power-law fluids. The velocity of inner flow is a function of the viscosities, electric properties and electroosmotic characters of two power-law fluids, while the peripheral flow is majorly influenced by the viscosity, electric property and electroosmotic characters of peripheral fluid. Irrespective of the configuration manner of power-law fluids, the shear thinning fluid is more sensitive to the change of other parameters.展开更多
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio...With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.展开更多
Solid-particle settling occurs in many natural and industrial processes, such as in the transportation of drilling cuttings and fracturing proppant. Knowledge of the drag coefficient and settling velocity of cuttings ...Solid-particle settling occurs in many natural and industrial processes, such as in the transportation of drilling cuttings and fracturing proppant. Knowledge of the drag coefficient and settling velocity of cuttings and proppant is of significance to hydraulics design, wellbore cleanout, and fracture optimization. We conducted 553 tests to investigate the settling characteristics of spherical and non-spherical particles in power-law fluids. Three major particle shapes (spherical, cubic, and cylindrical) and eight different particle sphericities were used to simulate cuttings and proppant, and power-law fluids were applied to simulate drilling and fracturing fluids. Based on the data analysis, a new drag coefficient-particle Reynolds number correlation was developed to determine the drag coefficient in a power-law fluid for spherical and non-spherical particles. The drag coefficient increases as the sphericity decreases for the same particle Reynolds number. For a specific particle shape, the drag coefficient decreases as the particle Reynolds number increases, but the decreasing trend is reduced at high particle Reynolds number conditions. An explicit settling-velocity equation was proposed to calculate the settling velocity of spherical and non-spherical particles in power-law fluids by considering the effect of sphericity. A suitable range for the proposed model is 0.0001 < Re <200, 0.471 <φ< 1, and 0.505 < n < 1. An illustrative example is presented to show how to calculate the drag coefficient and settling velocity in power-law fluids with given particle and fluid properties.展开更多
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pip...The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pipe with the interface between the two fluids occupied by an insoluble surfactant.Given the basic flow for this core-annular arrangement,the analytical solution is obtained with respect to the power-law fluid model.The linearized equations for the evolution of infinitesimal disturbances are derived and the stability problem is formulated as a generalized matrix eigenvalue problem,which is solved by using the software package Matlab based on the QZ algorithm.The shear-thinning property is found to have marked influence on the power-law fluid core-annular flow stability,which is reflected in various aspects.First,the capillary instability is magnified by the shear-thinning property,which may lead to an essential difference between power-law and Newtonian fluid flows.Especially when the interface is close to the pipe wall,the power-law fluid flow may be unstable while the Newtonian fluid flow is stable.Second,under disturbances to the interface a velocity discontinuity at the interface appears which is destabilizing to the flow.The magnitude of this velocity discontinuity is affected by the power-law index and the flow stability is influenced correspondingly.Besides,the shear-thinning property may induce new stability modes which do not appear in the Newtonian fluid flow.The flow stability shows much dependence on the interface location,the role of which was neglected in most previous studies.The shear-thinning fluid flow is more unstable to long wave disturbances when the interface is close to the pipe wall,while the Newtonian fluid flow is more unstable when the interface is close to the pipe centerline.But this trend is changed by the addition of interfacial surfactant,for which the power-law fluid flow is more stable no matter where the interface is located.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ...Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.展开更多
In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and...In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).展开更多
The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with inte...The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).展开更多
With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat tr...With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.展开更多
Exosomes,ubiquitously present in body fluids,serve as non-invasive biomarkers for disease diagnosis,monitoring,and treatment.As intercellular messengers,exosomes encapsulate a rich array of proteins,nucleic acids,and ...Exosomes,ubiquitously present in body fluids,serve as non-invasive biomarkers for disease diagnosis,monitoring,and treatment.As intercellular messengers,exosomes encapsulate a rich array of proteins,nucleic acids,and metabolites,although most studies have primarily focused on proteins and RNA.Recently,exosome metabolomics has demonstrated clinical value and potential advantages in disease detection and pathophysiology,despite significant challenges,particularly in exosome isolation and metabolite detection.This review discusses the significant technical challenges in exosome isolation and metabolite detection,highlighting the advancements in these areas that support the clinical application of exosome metabolomics,and illustrates the potential of exosomal metabolites from various body fluids as biomarkers for early disease diagnosis and treatment.展开更多
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear...Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.展开更多
Introduction: Microbiology of effusion fluids in children in Burkina Faso is characterized by the scarcity of data. This work aimed to study the bacteriological and antibiotics susceptibility profile of bacteria invol...Introduction: Microbiology of effusion fluids in children in Burkina Faso is characterized by the scarcity of data. This work aimed to study the bacteriological and antibiotics susceptibility profile of bacteria involved in effusion fluid infections in paediatrics in order to improve the choice of probabilistic antibiotics therapy. Methods: A cross-sectional, descriptive study was used in children aged 0 to 15 years from 2017 to 2020 at the Charles De Gaulle Pediatric University Hospital Center (CHUP-CDG) in Ouagadougou. Classical bacteriology methods such as macroscopy, Gram staining, identification galleries and antibiotics susceptibility testing were used. Results: Of 231 samples, 64 bacteria were isolated. The most common bacterial strains of pleural fluid were Staphylococcus aureus (25%) and 40% for Enterobacteriaceae. Of the peritoneal fluid, 77% were Enterobacteriaceae with 57% Escherichia coli;and from joint fluid, 33% were S. aureus and 22% for P. aeruginosa. The overall susceptibility profile showed 29% extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), 10% methicillin-resistant S. aureus (MRSA), and 8% carbapenemases. Conclusion: Bacteriological profile is characterized by ESBL-producing Enterobacteriaceae and MRSA. The most active antibiotics were macrolides, aminoglycosides, and cefoxitin (methicillin) for Gram-positive cocci, carbapenems, and aminoglycosides for Gram-negative bacilli. Then, the monitoring of antibiotics resistance must be permanent.展开更多
During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtr...During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering.展开更多
The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanoflu...The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanofluids,composed of water and Al_(2)O_(3),TiO_(2),and Cu nanoparticles,on heat transfer enhancement is examined.The aim of this research is also to analyze the influence of different parameters,including the Rayleigh number(Ra=10^(4)-10^(6)),nanoparticle volume fraction(φ=0%-20%),non-Newtonian power-law indexes(n=0.6-1.4),and fin dimensions(Ar=0.3,0.5,and 0.7).Streamlines and isotherms are used to depict flow and related heat transfer characteristics.Results indicate that thermal performance improves with increasing Rayleigh number,regardless of the nanoparticle type or nanofluid rheological behavior.This suggests that the buoyancy force has a significant impact on heat transfer,particularly near the heat source.The Nusselt number is more sensitive to variations in Cu nanoparticle volume fractions compared to Al₂O₃and TiO₂.Moreover,the average Nusselt numbers for power-law nanofluids with n<1(n>1)are greater(smaller)than for Newtonian fluids due to the decrease(increase)in viscosity with increasing(decreasing)shear rate,at the same values of Rayleigh number Ra owing to the amplification(attenuation)of the convective transfer.Notably,the most substantial enhancement is observed with Cu-water shear-thinning nanofluid,where the Nusselt number increases by 136%when changing from Newtonian to shear thinning behavior and by 154.9%when adding 16%nanoparticle volume fraction.Moreover,an even larger increase of 57%in the average Nusselt number is obtained on increasing the fin length from 0.3 to 0.7.展开更多
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r...With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.展开更多
文摘The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especially in the microchannel slits,flow pattern along the outlet arc and the pressure drop through the whole of microchannel plate were investigated at different power-law flow indexes.The results showed that the velocity profile in the microchannel slits for low flow index fluids was similar to the plug flow and had uniform pattern.Also the power-law fluids with lower flow indexes had lower stagnation zones near the outlet of the microchannel plate.The pressure drop through the microchannel plate showed huge differences between the fluids.The most interesting result was that the pressure drops for power-law fluids were very smaller than that of Newtonian fluids.In addition,the heat transfer of the fluids through the microchannel with different channel numbers in a wide range of Reynolds number was investigated.For power-law fluid with flow index(n=0.4),the Nusselt number increases continuously as the number of channels increases.The results highlight the potential use of using pseudoplastic fluids in the microheat exchangers which can lower the pressure drop and increase the heat transfer efficiency.
文摘A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.
文摘Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions.
文摘The present work delineates the hydrodynamics and thermal characteristics due to mixed convection in the liddriven semi-circular cavity affected by the presence of the adiabatic block at its geometric center for twodimensional,steady-state,laminar and for non-Newtonian power-law fluids.The semi-circular cavity has a diameter of D.The horizontal wall/lid is sliding with a uniform horizontal velocity(u=U)and is subjugated to the ambient thermal condition;while the curved surface is subjugated to a higher isothermal temperature.The convective characteristics inside the system is explored for the broad range of Richardson number(0.1≤Ri≤10),Prandtl number(1≤Pr≤100)and non-Newtonian power-law index(0.5≤n≤1.5)at a constant Grashof number of 10~4.Apart from this,the effect of shape(cross-section)of the inserted block,i.e.,circular,square and triangular on heat transfer characteristics has also been explored.It is observed that the shear thickening fluids display better cooling characteristics.Besides,the cavity with immersed triangular block shows better heat transfer results than the circular and square blocks.The deviations observed in the flow and heat transfer characteristics in the cavity by inserting an adiabatic block as compared with cavity without block have been ascertained by calculating normalized Nusselt number(Nu^N).The presence of the block was found to have a diminishing effect on the heat transfer due to convection in the cavity.In the end,the results of the study are summarized in the form of a predictive correlation exhibiting the functional dependence of average Nusselt number with Prandtl number,power-law index,and Richardson number.
文摘The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immiscible power-law fluids through a microtube is studied with consideration of zeta potential difference near the two-liquid interface. The modified Cauchy momentum equation in cylindrical coordinate governing the two-liquid velocity distributions is solved where both peripheral and inner liquids are represented by power-law model. The two-fluid velocity distribution under the combined interaction of power-law rheological effect and circular wall effect is evaluated at different viscosities and different electroosmotic characters of inner and peripheral power-law fluids. The velocity of inner flow is a function of the viscosities, electric properties and electroosmotic characters of two power-law fluids, while the peripheral flow is majorly influenced by the viscosity, electric property and electroosmotic characters of peripheral fluid. Irrespective of the configuration manner of power-law fluids, the shear thinning fluid is more sensitive to the change of other parameters.
文摘With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.
基金The authors express their appreciation to the Science Fund for Creative Research Groups of the National Natural Science Foun-dation of China (No. 51521063)the National Natural Science Foundation of China (No. U1562212)+2 种基金the National Science and Technology Major Project of China (Grant No. 2016ZX05023-006)the National Key Research and Development Program of China (Grant No. 2016YFE0124600)the State Scholarship Fund (CSC file No. 201706440059).
文摘Solid-particle settling occurs in many natural and industrial processes, such as in the transportation of drilling cuttings and fracturing proppant. Knowledge of the drag coefficient and settling velocity of cuttings and proppant is of significance to hydraulics design, wellbore cleanout, and fracture optimization. We conducted 553 tests to investigate the settling characteristics of spherical and non-spherical particles in power-law fluids. Three major particle shapes (spherical, cubic, and cylindrical) and eight different particle sphericities were used to simulate cuttings and proppant, and power-law fluids were applied to simulate drilling and fracturing fluids. Based on the data analysis, a new drag coefficient-particle Reynolds number correlation was developed to determine the drag coefficient in a power-law fluid for spherical and non-spherical particles. The drag coefficient increases as the sphericity decreases for the same particle Reynolds number. For a specific particle shape, the drag coefficient decreases as the particle Reynolds number increases, but the decreasing trend is reduced at high particle Reynolds number conditions. An explicit settling-velocity equation was proposed to calculate the settling velocity of spherical and non-spherical particles in power-law fluids by considering the effect of sphericity. A suitable range for the proposed model is 0.0001 < Re <200, 0.471 <φ< 1, and 0.505 < n < 1. An illustrative example is presented to show how to calculate the drag coefficient and settling velocity in power-law fluids with given particle and fluid properties.
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772097 and 10972115)
文摘The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pipe with the interface between the two fluids occupied by an insoluble surfactant.Given the basic flow for this core-annular arrangement,the analytical solution is obtained with respect to the power-law fluid model.The linearized equations for the evolution of infinitesimal disturbances are derived and the stability problem is formulated as a generalized matrix eigenvalue problem,which is solved by using the software package Matlab based on the QZ algorithm.The shear-thinning property is found to have marked influence on the power-law fluid core-annular flow stability,which is reflected in various aspects.First,the capillary instability is magnified by the shear-thinning property,which may lead to an essential difference between power-law and Newtonian fluid flows.Especially when the interface is close to the pipe wall,the power-law fluid flow may be unstable while the Newtonian fluid flow is stable.Second,under disturbances to the interface a velocity discontinuity at the interface appears which is destabilizing to the flow.The magnitude of this velocity discontinuity is affected by the power-law index and the flow stability is influenced correspondingly.Besides,the shear-thinning property may induce new stability modes which do not appear in the Newtonian fluid flow.The flow stability shows much dependence on the interface location,the role of which was neglected in most previous studies.The shear-thinning fluid flow is more unstable to long wave disturbances when the interface is close to the pipe wall,while the Newtonian fluid flow is more unstable when the interface is close to the pipe centerline.But this trend is changed by the addition of interfacial surfactant,for which the power-law fluid flow is more stable no matter where the interface is located.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
文摘Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.
文摘In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).
基金supported by the National Natural Science Foundation of China(Grant No.52271320)"Mechanics+"interdisciplinary innovation youth fund project of Ningbo University(LJ2023005).
文摘With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.
文摘Exosomes,ubiquitously present in body fluids,serve as non-invasive biomarkers for disease diagnosis,monitoring,and treatment.As intercellular messengers,exosomes encapsulate a rich array of proteins,nucleic acids,and metabolites,although most studies have primarily focused on proteins and RNA.Recently,exosome metabolomics has demonstrated clinical value and potential advantages in disease detection and pathophysiology,despite significant challenges,particularly in exosome isolation and metabolite detection.This review discusses the significant technical challenges in exosome isolation and metabolite detection,highlighting the advancements in these areas that support the clinical application of exosome metabolomics,and illustrates the potential of exosomal metabolites from various body fluids as biomarkers for early disease diagnosis and treatment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51775077 and 51909023)。
文摘Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.
文摘Introduction: Microbiology of effusion fluids in children in Burkina Faso is characterized by the scarcity of data. This work aimed to study the bacteriological and antibiotics susceptibility profile of bacteria involved in effusion fluid infections in paediatrics in order to improve the choice of probabilistic antibiotics therapy. Methods: A cross-sectional, descriptive study was used in children aged 0 to 15 years from 2017 to 2020 at the Charles De Gaulle Pediatric University Hospital Center (CHUP-CDG) in Ouagadougou. Classical bacteriology methods such as macroscopy, Gram staining, identification galleries and antibiotics susceptibility testing were used. Results: Of 231 samples, 64 bacteria were isolated. The most common bacterial strains of pleural fluid were Staphylococcus aureus (25%) and 40% for Enterobacteriaceae. Of the peritoneal fluid, 77% were Enterobacteriaceae with 57% Escherichia coli;and from joint fluid, 33% were S. aureus and 22% for P. aeruginosa. The overall susceptibility profile showed 29% extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), 10% methicillin-resistant S. aureus (MRSA), and 8% carbapenemases. Conclusion: Bacteriological profile is characterized by ESBL-producing Enterobacteriaceae and MRSA. The most active antibiotics were macrolides, aminoglycosides, and cefoxitin (methicillin) for Gram-positive cocci, carbapenems, and aminoglycosides for Gram-negative bacilli. Then, the monitoring of antibiotics resistance must be permanent.
基金the National Natural Science Foundation of China(No.52204023)China Postdoctoral Science Foundation(2022M713465)Postdoctoral Innovation Talent Support of Shandong Province(SDBX2022033)。
文摘During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering.
基金financial support by Campus France within the framework of the PHC-Maghreb 45990SH Projectsupport from the Tunisian Republic Ministry of Higher Education and Scientific Research for a part of her stay in France.
文摘The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanofluids,composed of water and Al_(2)O_(3),TiO_(2),and Cu nanoparticles,on heat transfer enhancement is examined.The aim of this research is also to analyze the influence of different parameters,including the Rayleigh number(Ra=10^(4)-10^(6)),nanoparticle volume fraction(φ=0%-20%),non-Newtonian power-law indexes(n=0.6-1.4),and fin dimensions(Ar=0.3,0.5,and 0.7).Streamlines and isotherms are used to depict flow and related heat transfer characteristics.Results indicate that thermal performance improves with increasing Rayleigh number,regardless of the nanoparticle type or nanofluid rheological behavior.This suggests that the buoyancy force has a significant impact on heat transfer,particularly near the heat source.The Nusselt number is more sensitive to variations in Cu nanoparticle volume fractions compared to Al₂O₃and TiO₂.Moreover,the average Nusselt numbers for power-law nanofluids with n<1(n>1)are greater(smaller)than for Newtonian fluids due to the decrease(increase)in viscosity with increasing(decreasing)shear rate,at the same values of Rayleigh number Ra owing to the amplification(attenuation)of the convective transfer.Notably,the most substantial enhancement is observed with Cu-water shear-thinning nanofluid,where the Nusselt number increases by 136%when changing from Newtonian to shear thinning behavior and by 154.9%when adding 16%nanoparticle volume fraction.Moreover,an even larger increase of 57%in the average Nusselt number is obtained on increasing the fin length from 0.3 to 0.7.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51991361)the foundation of China University of Petroleum(Beijing)(Grant No.2462021YXZZ002).
文摘With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.