Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and har...Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.展开更多
Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although tr...Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.展开更多
The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (...The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (RT) user,minimal rate for each non-real time (NRT) user,maximal bits and power for each subcarrier in each orthogonal frequency division multiplexing (OFDM) symbol. An algorithm of resource dynamic allocation in the first OFDM symbol of each frame and resource optimal adjustment in the latter OFDM symbol of each frame was proposed. In the first OFDM symbol of every frame,resource is firstly assigned for RT users so as to minimize their total used power until satisfying their fixed rates; secondly the remainder resource of power and subcarriers are assigned for NRT users so as to minimize their total used power until satisfying their minimal rates also; lastly the remainder resource is again assigned for NRT users according to the proportional fairness strategy so as to maximize their total assigning rate. In the latter OFDM symbol of each frame,bits are swapped and power is adjusted for every user based on the resource allocation results of anterior OFDM symbol. The algorithm is tested in the typical power-line channel scenarios and the simulation results indicate that the proposed algorithm has better performances than the classical multi-user resource allocation algorithms and it realizes the multiple aims of multi-user multi-server resource allocation for power-line communication systems.展开更多
Power-line networks are designed to deliver electricity. They reach most of the domiciles and other buildings nowadays, so most of the people have access to it. On the other hand the backbone for the communications ne...Power-line networks are designed to deliver electricity. They reach most of the domiciles and other buildings nowadays, so most of the people have access to it. On the other hand the backbone for the communications networks is not available in all countries especially the developing ones. A high cost and changing the design for the networks may be needed to construct this backbone. If data can be transmitted over the power-line networks, a recognized cost and time save can be achieved. In Egypt, the infrastructure is not always available for constructing a communications network backbone due to the already designed buildings before the need for these backbones. In this paper, we overcome this problem by designing a reliable Power-line Modem that operates safely on the low voltage grid. The modem is based on the Direct Sequence Spread Spectrum technique. It uses the mains zero crossing as an efficient way for the synchronization between the transmitter and the receiver. The Modem takes into account the problems of the Power-line including noise, attenuation and impedance dismatching.展开更多
This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a sing...This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.展开更多
基于可控电网换相型换流器(controllable line commutated converter,CLCC)的高压直流输电技术避免了常规直流换相失败问题,为高压直流馈入电网提供了崭新途径。文章揭示CLCC高压直流输电系统的故障响应机理,对比CLCC与电网换相型换流...基于可控电网换相型换流器(controllable line commutated converter,CLCC)的高压直流输电技术避免了常规直流换相失败问题,为高压直流馈入电网提供了崭新途径。文章揭示CLCC高压直流输电系统的故障响应机理,对比CLCC与电网换相型换流器、电压源型换流器等直流输电技术的功率特性差异。针对CLCC可控换流的技术特点,提出一种基于最大触发角提升的CLCC优化控制方法,改善了CLCC的故障响应特性,提升了受端电网交流电压的恢复速度。最后,基于PSD-PSModel电力系统仿真软件,建立送受端电网机电暂态和CLCC直流电磁暂态的混合仿真模型,验证理论分析的准确性和优化控制的有效性。展开更多
基金supported by the National Natural Science Foundation of China(No.61772386)National Key Research and Development Project(No.2018YFB1305001)Fundamental Research Funds for the Central Universities(No.KJ02072021-0119).
文摘Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.
基金Project(2014AA06A602)supported by the National High-Tech Research and Development Program of ChinaProjects(41404111,41304098)supported by the National Natural Science Foundation of ChinaProject(2015JJ3088)supported by the Natural Science Foundation of Hunan Province,China
文摘Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.
基金Projects(51007021, 60402004) supported by the National Natural Science Foundation of China
文摘The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (RT) user,minimal rate for each non-real time (NRT) user,maximal bits and power for each subcarrier in each orthogonal frequency division multiplexing (OFDM) symbol. An algorithm of resource dynamic allocation in the first OFDM symbol of each frame and resource optimal adjustment in the latter OFDM symbol of each frame was proposed. In the first OFDM symbol of every frame,resource is firstly assigned for RT users so as to minimize their total used power until satisfying their fixed rates; secondly the remainder resource of power and subcarriers are assigned for NRT users so as to minimize their total used power until satisfying their minimal rates also; lastly the remainder resource is again assigned for NRT users according to the proportional fairness strategy so as to maximize their total assigning rate. In the latter OFDM symbol of each frame,bits are swapped and power is adjusted for every user based on the resource allocation results of anterior OFDM symbol. The algorithm is tested in the typical power-line channel scenarios and the simulation results indicate that the proposed algorithm has better performances than the classical multi-user resource allocation algorithms and it realizes the multiple aims of multi-user multi-server resource allocation for power-line communication systems.
文摘Power-line networks are designed to deliver electricity. They reach most of the domiciles and other buildings nowadays, so most of the people have access to it. On the other hand the backbone for the communications networks is not available in all countries especially the developing ones. A high cost and changing the design for the networks may be needed to construct this backbone. If data can be transmitted over the power-line networks, a recognized cost and time save can be achieved. In Egypt, the infrastructure is not always available for constructing a communications network backbone due to the already designed buildings before the need for these backbones. In this paper, we overcome this problem by designing a reliable Power-line Modem that operates safely on the low voltage grid. The modem is based on the Direct Sequence Spread Spectrum technique. It uses the mains zero crossing as an efficient way for the synchronization between the transmitter and the receiver. The Modem takes into account the problems of the Power-line including noise, attenuation and impedance dismatching.
文摘This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.
文摘基于可控电网换相型换流器(controllable line commutated converter,CLCC)的高压直流输电技术避免了常规直流换相失败问题,为高压直流馈入电网提供了崭新途径。文章揭示CLCC高压直流输电系统的故障响应机理,对比CLCC与电网换相型换流器、电压源型换流器等直流输电技术的功率特性差异。针对CLCC可控换流的技术特点,提出一种基于最大触发角提升的CLCC优化控制方法,改善了CLCC的故障响应特性,提升了受端电网交流电压的恢复速度。最后,基于PSD-PSModel电力系统仿真软件,建立送受端电网机电暂态和CLCC直流电磁暂态的混合仿真模型,验证理论分析的准确性和优化控制的有效性。