We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses i...We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.展开更多
We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative solit...We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative soliton laser operating at1030 nm, and operating in dissipative soliton mode. The amplifier stage is mainly based on a double-cladding20 μm radius ytterbium-doped fiber pumped by an up to 2.5 W CW laser source. The optical-to-optical conversion amplifier efficiency is around 40%. To our knowledge, this is the first report of an all-fiber mode-locked fiber laser oscillator amplified by an all-fiber amplifier.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61805274)the Major Program of the National Natural Science Foundation of China(Grant No.12034020)Research Foundation of Inner Mongolia University of China(Grant No.21200-5215108)。
文摘We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.
基金Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative soliton laser operating at1030 nm, and operating in dissipative soliton mode. The amplifier stage is mainly based on a double-cladding20 μm radius ytterbium-doped fiber pumped by an up to 2.5 W CW laser source. The optical-to-optical conversion amplifier efficiency is around 40%. To our knowledge, this is the first report of an all-fiber mode-locked fiber laser oscillator amplified by an all-fiber amplifier.