Extreme meteorological and hydrological events may cause major disasters and heavy social and economic losses. Therefore, more and more studies have focused on extreme hydro-meteorological events in various climates a...Extreme meteorological and hydrological events may cause major disasters and heavy social and economic losses. Therefore, more and more studies have focused on extreme hydro-meteorological events in various climates and geographic regions. Based on nearly 50 years of observed records of the Poyang Lake Basin, the occurrence and changing trends of extreme streamflow indices, including the annual maximum flow, annual peak-over-threshold flows, and low flows, were analyzed for ten hydrological stations. The results indicate that most annual maximum flows occurred from April to July, highly attributed to the Southeast Asian summer monsoons, whereas the annual minimum flows were concentrated between January and February. As for the low flow indices (the annual minimum flow, annual minimum 7-d flow, and annual minimum 30-d flow), a significant increasing trend was detected in most parts of the Poyang Lake Basin. The trends illustrate the potential effects of climate change and human activities on the hydrological cycle over the Poyang Lake Basin.展开更多
Objective A total of 820 million tons of potash reserves are predicted to exist in the Palaeocene-Eocene of the Jianghan Basin. However, the basin history is still unclear concerning the potash enriching conditions a...Objective A total of 820 million tons of potash reserves are predicted to exist in the Palaeocene-Eocene of the Jianghan Basin. However, the basin history is still unclear concerning the potash enriching conditions and mechanism. The Well SKDI is the first exploration well drilled in the Paleogene of Jianghan Basin with continuous coring, which was implemented in the south-central Jiangling Basin in 2013. It is essential to study the Palaeocene-Eocene paleoclimate, to further constrain the extreme draught events and the potash forming conditions.展开更多
Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of cl...Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downseale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010-2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation.展开更多
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2007CB407203)the Chinese Postdoctoral Science Fund Project (Grant No. 20110490402)
文摘Extreme meteorological and hydrological events may cause major disasters and heavy social and economic losses. Therefore, more and more studies have focused on extreme hydro-meteorological events in various climates and geographic regions. Based on nearly 50 years of observed records of the Poyang Lake Basin, the occurrence and changing trends of extreme streamflow indices, including the annual maximum flow, annual peak-over-threshold flows, and low flows, were analyzed for ten hydrological stations. The results indicate that most annual maximum flows occurred from April to July, highly attributed to the Southeast Asian summer monsoons, whereas the annual minimum flows were concentrated between January and February. As for the low flow indices (the annual minimum flow, annual minimum 7-d flow, and annual minimum 30-d flow), a significant increasing trend was detected in most parts of the Poyang Lake Basin. The trends illustrate the potential effects of climate change and human activities on the hydrological cycle over the Poyang Lake Basin.
基金the National Science Foundation of China(Grants No.41502089,41302059 and 41202059)for their financial support
文摘Objective A total of 820 million tons of potash reserves are predicted to exist in the Palaeocene-Eocene of the Jianghan Basin. However, the basin history is still unclear concerning the potash enriching conditions and mechanism. The Well SKDI is the first exploration well drilled in the Paleogene of Jianghan Basin with continuous coring, which was implemented in the south-central Jiangling Basin in 2013. It is essential to study the Palaeocene-Eocene paleoclimate, to further constrain the extreme draught events and the potash forming conditions.
基金Acknowledgements This study was supported by the National Nature Science Foundation of China (Grant Nos. 51539009 and 51190094), and the National Key Research and Development Plan of China (2016YFC0402206). The authors thank the editor and anonymous reviewers for their comments and suggestions, and Prof. Chong-Yu Xu and Dr. David E. Rheinheimer whose cornments and English language editing helped to clarify and improve the quality of this paper.
文摘Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downseale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010-2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation.