The pozzolanic reactivity was determined by the hydration kinetics of pozzolanic reaction based on the fact that the hydration products of active SiO2 and Al2O3 with lime were soluble in dilute hydrochloric acid. The ...The pozzolanic reactivity was determined by the hydration kinetics of pozzolanic reaction based on the fact that the hydration products of active SiO2 and Al2O3 with lime were soluble in dilute hydrochloric acid. The results show that the pozzolanic reaction of active SiO2 and Al2O3 of coal ashes follows apparent first-order kinetics. The reaction rate constant of FBC ashes is greater than that of PC ashes, while the activation energy of the former is lower than that of the latter. It is confirmed that the pozzolanic activity of fluidized bed combustion(FBC) ashes is significantly higher than that of PC ashes, and the reaction barrier of the former is lower than that of the latter, because the microstructures of FBC ashes, such as mineralogical composition, morphology and polymerization degree of [SiO4] and [AlO6] are more favorable to the pozzolanic activity development than those of PC ashes.展开更多
To improve the pozzolanic reactivity,waste glass(WG)needs to be micronized to fine particles so as to expedite the leaching of active constituent.The key feature of this work is to examine the effect of wet-grinded WG...To improve the pozzolanic reactivity,waste glass(WG)needs to be micronized to fine particles so as to expedite the leaching of active constituent.The key feature of this work is to examine the effect of wet-grinded WG on the mechanical and structural properties of cement based materials.The experimental results show that wet-grinding can improve the ions leaching behavior of WGP and decrease the stability of silicon oxide bond.The pozzolanic reactivity of WGP was dramatically enhanced after wet-grinding,as high as 144.1%at 1 d and 110.9%at 28 d when the mean grain size of WGP reached 0.90μm.The ground WGP can promote the transformation of capillary pores to gel pores to improve the compactness of microstructure regardless of the reaction time.展开更多
The valorization of Senegalese attapulgite clay in concrete, as a solution against the exhaustion of the cement deposits was studied. In that purpose, attapulgite was first calcined at 800°C to make it reactive a...The valorization of Senegalese attapulgite clay in concrete, as a solution against the exhaustion of the cement deposits was studied. In that purpose, attapulgite was first calcined at 800°C to make it reactive and added in concrete by substitution of Portland cement (CEM I 52.5N) at contents of 0, 5 and 10% by conserving a constant water/cement ratio value of 0.65. The effects of the partial replacement of cement by attapulgite on the physicochemical and mechanical properties of the concrete as well as on the steel-concrete bond were examined. For this purpose, the water porosity, the intrinsic permeability and the density of the clay-based concrete were evaluated. Compression, tensile and pull-out tests were carried out to determine the impact of clay on the Young modulus, the compressive and tensile strengths and the steel-concrete bond. This study was completed by a characterization of the pozzolanic reactivity of calcined attapulgite. All the results of these studies were compared with those of Portland cement as a reference. The substitution of cement by attapulgite up to 10% in concrete has only a small influence on its porosity and permeability and confers to the concrete gain in compressive strength of 11%. However, it caused a loss of steel-concrete bond of 10%.展开更多
Four raw deposits clayey materials in Burkina Faso have been characterized using X-ray diffraction, infrared spectroscopy and ICP-AES to evaluate their suitability to be used as pozzolan in cement. The samples have be...Four raw deposits clayey materials in Burkina Faso have been characterized using X-ray diffraction, infrared spectroscopy and ICP-AES to evaluate their suitability to be used as pozzolan in cement. The samples have been activated by thermal treatment at 730°C during 5 hours. The obtained metakaolin was investigated by means of complementary techniques for their use as pozzolan in building materials. Fineness, surface area and amorphousness of metakaolins were the dominant factors which influenced their pozzolan reactivity. The compressive strengths of blended specimens were slightly increased with metakaolins named MK1 and MK2 than the reference for the substitution of 20 - 25 wt%. This was due to the metakaolins’ pozzolan reactivity and their filler effects which promoted CSH formation and reduced pores in the specimens. MK1 and MK2 were suitable for replacement of Portland cement in the field of building materials.展开更多
Glass is a common material made from natural resources such as sand.Although much of the waste glass is recycled to make new glass products,a large proportion is still being sent to landfill.Glass is a useful resource...Glass is a common material made from natural resources such as sand.Although much of the waste glass is recycled to make new glass products,a large proportion is still being sent to landfill.Glass is a useful resource that is non-biodegradable,occupying valuable landfill space.To combat the waste glass that is heading to landfill,alternative recycling forms need to be investigated.The construction industry is one of the largest CO_(2) emitters in the world,producing up to 8% of the global CO_(2) to produce cement.The use of sand largely depletes natural resources for the creation of mortars or concretes.This review explores the possibilities of incorporating waste glass into cement-based materials.It was found waste glass is unsuitable as a raw material replacement to produce clinker and as a coarse aggregate,due to a liquid state being produced in the kiln and the smooth surface area,respectively.Promising results were found when incorporating fine particles of glass in cement-based materials due to the favourable pozzolanic reaction which benefits the mechanical properties.It was found that 20% of cement can be replaced with waste glass of 20 mm without detrimental effects on the mechanical properties.Replacements higher than 30% can cause negative impacts as insufficient amounts of CaCO_(3) remain to react with the silica from the glass,known as the dilution effect.As the fine aggregate replacement for waste glass increases over 20%,the mechanical properties decrease proportionally;however,up to 20% has similar results to traditionally mixes.展开更多
基金Funded by the National Natural Science Foundation of China (No50802080)Shandong Provincial Scientific Research Foundation for Excellent Young Scientists (No.2008BS09005)
文摘The pozzolanic reactivity was determined by the hydration kinetics of pozzolanic reaction based on the fact that the hydration products of active SiO2 and Al2O3 with lime were soluble in dilute hydrochloric acid. The results show that the pozzolanic reaction of active SiO2 and Al2O3 of coal ashes follows apparent first-order kinetics. The reaction rate constant of FBC ashes is greater than that of PC ashes, while the activation energy of the former is lower than that of the latter. It is confirmed that the pozzolanic activity of fluidized bed combustion(FBC) ashes is significantly higher than that of PC ashes, and the reaction barrier of the former is lower than that of the latter, because the microstructures of FBC ashes, such as mineralogical composition, morphology and polymerization degree of [SiO4] and [AlO6] are more favorable to the pozzolanic activity development than those of PC ashes.
基金Funded by the National Natural Science Foundation of China(No.52008158)the National Key Research and Development Program of China(No.2019YFC1907104)。
文摘To improve the pozzolanic reactivity,waste glass(WG)needs to be micronized to fine particles so as to expedite the leaching of active constituent.The key feature of this work is to examine the effect of wet-grinded WG on the mechanical and structural properties of cement based materials.The experimental results show that wet-grinding can improve the ions leaching behavior of WGP and decrease the stability of silicon oxide bond.The pozzolanic reactivity of WGP was dramatically enhanced after wet-grinding,as high as 144.1%at 1 d and 110.9%at 28 d when the mean grain size of WGP reached 0.90μm.The ground WGP can promote the transformation of capillary pores to gel pores to improve the compactness of microstructure regardless of the reaction time.
文摘The valorization of Senegalese attapulgite clay in concrete, as a solution against the exhaustion of the cement deposits was studied. In that purpose, attapulgite was first calcined at 800°C to make it reactive and added in concrete by substitution of Portland cement (CEM I 52.5N) at contents of 0, 5 and 10% by conserving a constant water/cement ratio value of 0.65. The effects of the partial replacement of cement by attapulgite on the physicochemical and mechanical properties of the concrete as well as on the steel-concrete bond were examined. For this purpose, the water porosity, the intrinsic permeability and the density of the clay-based concrete were evaluated. Compression, tensile and pull-out tests were carried out to determine the impact of clay on the Young modulus, the compressive and tensile strengths and the steel-concrete bond. This study was completed by a characterization of the pozzolanic reactivity of calcined attapulgite. All the results of these studies were compared with those of Portland cement as a reference. The substitution of cement by attapulgite up to 10% in concrete has only a small influence on its porosity and permeability and confers to the concrete gain in compressive strength of 11%. However, it caused a loss of steel-concrete bond of 10%.
文摘Four raw deposits clayey materials in Burkina Faso have been characterized using X-ray diffraction, infrared spectroscopy and ICP-AES to evaluate their suitability to be used as pozzolan in cement. The samples have been activated by thermal treatment at 730°C during 5 hours. The obtained metakaolin was investigated by means of complementary techniques for their use as pozzolan in building materials. Fineness, surface area and amorphousness of metakaolins were the dominant factors which influenced their pozzolan reactivity. The compressive strengths of blended specimens were slightly increased with metakaolins named MK1 and MK2 than the reference for the substitution of 20 - 25 wt%. This was due to the metakaolins’ pozzolan reactivity and their filler effects which promoted CSH formation and reduced pores in the specimens. MK1 and MK2 were suitable for replacement of Portland cement in the field of building materials.
文摘Glass is a common material made from natural resources such as sand.Although much of the waste glass is recycled to make new glass products,a large proportion is still being sent to landfill.Glass is a useful resource that is non-biodegradable,occupying valuable landfill space.To combat the waste glass that is heading to landfill,alternative recycling forms need to be investigated.The construction industry is one of the largest CO_(2) emitters in the world,producing up to 8% of the global CO_(2) to produce cement.The use of sand largely depletes natural resources for the creation of mortars or concretes.This review explores the possibilities of incorporating waste glass into cement-based materials.It was found waste glass is unsuitable as a raw material replacement to produce clinker and as a coarse aggregate,due to a liquid state being produced in the kiln and the smooth surface area,respectively.Promising results were found when incorporating fine particles of glass in cement-based materials due to the favourable pozzolanic reaction which benefits the mechanical properties.It was found that 20% of cement can be replaced with waste glass of 20 mm without detrimental effects on the mechanical properties.Replacements higher than 30% can cause negative impacts as insufficient amounts of CaCO_(3) remain to react with the silica from the glass,known as the dilution effect.As the fine aggregate replacement for waste glass increases over 20%,the mechanical properties decrease proportionally;however,up to 20% has similar results to traditionally mixes.