Dysregulation of G9a,a histone-lysine N-methyltransferase,has been observed in Alzheimer’s disease and has been correlated with increased levels of chronic inflammation and oxidative stress.Likewise,microRNAs are inv...Dysregulation of G9a,a histone-lysine N-methyltransferase,has been observed in Alzheimer’s disease and has been correlated with increased levels of chronic inflammation and oxidative stress.Likewise,microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis,especially in multifactorial diseases such as Alzheimer’s disease.Therefore,our aim has been to provide partial insights into the interconnection between G9a,microRNAs,oxidative stress,and neuroinflammation.To better understand the biology of G9a,we compared the global microRNA expression between senescence-accelerated mouse-prone 8(SAMP8)control mice and SAMP8 treated with G9a inhibitor UNC0642.We found a downregulation of miR-128 after a G9a inhibition treatment,which interestingly binds to the 3′untranslated region(3′-UTR)of peroxisome-proliferator activator receptor γ(PPARG)mRNA.Accordingly,Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group.We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor.To confirm these antioxidant effects,we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult.In this setting,treatment with G9a inhibitor increases both cell survival and antioxidant enzymes.Moreover,up-regulation of PPARγby G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis.In addition,we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression.Finally,PPARγ/GADD45αpotentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition.Altogether,we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due,at least in part,by the modulation of PPARγ-dependent pathways by miR-128.展开更多
Based on the theory of constitution of Traditional Chinese Medicine (TCM), the human population is divided into nine constitutions including one balanced constitution (Normality) and eight unbalanced constitutions...Based on the theory of constitution of Traditional Chinese Medicine (TCM), the human population is divided into nine constitutions including one balanced constitution (Normality) and eight unbalanced constitutions (Yang-deficiency, Yin-deficiency, Phlegm-wetness, Qi-deficiency, Wetness-heat, Blood stasis, Depressed constitution, and Inherited special constitution). Different constitutions have specific metabolic features and different susceptibility to certain diseases. However, whether a genetic basis accounts for such constitution classification is yet to be determined. Here we performed a genetic study to assess the association between genetic variations of metabolic genes including PPARD, PPARG and APM1 and the constitutions. A total of 233 individuals of the Han population in China were classified into four groups, Normality, Yang-deficiency, Yin-deficiency and Phlegm-wetness with whom 23 single nucleotide polymorphisms (SNPs) in the three genes were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Biased distribution of PPARD rs2267669 and rs2076167, APM1 rs7627128 and rs1063539 in Yang-deficiency, PPARG Prol2Ala in Yin-deficiency and PPARD rs2076167, APMI rs266729 and rs7627128 in Phlegm-wetness were observed. The frequencies of Haplotypel3 (Hapl3) of PPARG in Yin-deficiency, Hap25 of APM1 in Yang-deficiency and Hap2 of PPARD and Hapl4 of PPARG in Phlegm-wetness, were significantly different from those in Normality, suggesting those might be group-associated haplotypes. These results suggested that single SNP and haplotypes ofPPARD, PPARG and APM1 may underlie the genetic basis of the constitutions classified in TCM.展开更多
Background KCNJ11, ABCC8, PPARG, and HNF4A have been found to be associated with type 2 diabetes in populations with different genetic backgrounds. The aim of this study was to test, in a Chinese Han population from B...Background KCNJ11, ABCC8, PPARG, and HNF4A have been found to be associated with type 2 diabetes in populations with different genetic backgrounds. The aim of this study was to test, in a Chinese Han population from Beijing, whether the genetic variants in these four genes were associated with genetic predisposition to type 2 diabetes. Methods We studied the association of four representative SNPs in KCNJ11, ABCC8, PPARG, and HNF4A by genotyping them using ABI SNaPshot Multiplex System in 400 unrelated type 2 diabetic patients and 400 unrelated normoglycaemic subjects. Results rs5219(E23K) in KCNJ11 was associated with genetic susceptibility to type 2 diabetes (OR=1.400 with 95% CI 1.117 1.755, P=0.004 under an additive model, 0R=1.652 with 95% CI 1.086 2.513, P=0.019 under a recessive model, and OR=1.521 with 95% Cl 1.089 2.123, P=0.014 under a dominant model) after adjusting for sex and body mass index (BMI). We did not find evidence of association for ABCC8 rs1799854, PPARG rs1801282 (Pro12Ala) and HNF4A rs2144908. Genotype-phenotype correlation analysis revealed that rs1799854 in ABCC8 was associated with 2-hour postprandial insulin secretion (P=0.005) after adjusting for sex, age and BMI. Although no interactions between the four variants on the risk of type 2 diabetes were detected, the multiplicative interaction between PPARG Pro12Ala and HNF4A rs2144908 was found to be associated with 2-hour postprandial insulin (P=-0.004 under an additive model for rs2144908; and P=0.001 under a dominant model for rs2144908) after adjusting for age, sex and BMI, assuming a dominant model for PPARG Pro12Ala. Conclusions Our study replicated the association of rs5219 in KCNJ11 with type 2 diabetes in Chinese Han population in Beijing. And we also observed that ABCC8 as well as the interaction between PPARG and HNF4A may contribute to post-challenge insulin secretion.展开更多
Background:Exercise is beneficial for muscle atrophy.Peroxisome proliferator-activated receptor gamma(PPARγ) and microRNA-29 b(miR-29 b) have been reported to be responsible for angiotensinⅡ(AngⅡ)-induced muscle at...Background:Exercise is beneficial for muscle atrophy.Peroxisome proliferator-activated receptor gamma(PPARγ) and microRNA-29 b(miR-29 b) have been reported to be responsible for angiotensinⅡ(AngⅡ)-induced muscle atrophy.However,it is unclear whether exercise can protect AngⅡ-induced muscle atrophy by targeting PPARγ/miR-29 b.Methods:Skeletal muscle atrophy in both the control group and the run group was established by AngⅡ infusion;after 1 week of exercise training,the mice were sacrificed,and muscle weight was determined.Myofiber size was measured by hematoxylin-eosin and wheat-germ agglutinin staining.Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling staining.The expression level of muscle atrogenes,including F-box only protein 32(FBXO32,also called Atrogin-1) and muscle-specific RING-finger 1(MuRF-1),the phosphorylation level of protein kinase B(PKB,also called AKT)/forkhead box 03 A(FOX03 A)/mammalian target of rapamycin(mTOR) pathway proteins,the expression level of PPARγ and apoptosis-related proteins,including B-cell lymphoma-2(Bcl-2),Bcl-2-associated X(Bax),cysteine-aspartic acid protease 3(caspase-3),and cleaved-caspase-3,were determined by western blot.The expression level of miR-29 b was checked by reversetranscription quantitative polymerase chain reaction.A PPARγ inhibitor(T0070907) or adeno-associated virus serotype-8(AAV8)-mediated miR-29 b overexpression was used to demonstrate whether PPARγ activation or miR-29 b inhibition mediates the beneficial effects of exercise in AngⅡ-induced muscle atrophy.Results:Exercise can significantly attenuate AngⅡ-induced muscle atrophy,which is demonstrated by increased skeletal muscle weight,cross-sectional area of myofiber,and activation of AKT/mTOR signaling and by decreased atrogenes expressions and apoptosis.In AngⅡ-induced muscle atrophy mice models,PPARγ was elevated whereas miR-29 b was decreased by exercise.The protective effects of exercise in AngⅡ-induced muscle atrophy were inhibited by a PPARγ inhibitor(T0070907) or adeno-associated virus serotype-8(AAV8)-mediated miR-29 b overexpression.Conclusion:Exercise attenuates AngⅡ-induced muscle atrophy by activation of PPARγ and suppression of miR-29 b.展开更多
基金supported by the Ministerio de Economía,Industria y Competitividad(Agencia Estatal de Investigación,AEI,to CGF and MP)Fondo Europeo de Desarrollo Regional(MINECO-FEDER)(PID2022-139016OA-I00,PDC2022-133441-I00,to CGF and MP),Generalitat de Catalunya(2021 SGR 00357+3 种基金to CGF and MP)co-financed by Secretaria d’Universitats i Recerca del Departament d’Empresai Coneixement de la Generalitat de Catalunya 2021(Llavor 00086,to CGF)the recipient of an Alzheimer’s Association Research Fellowship(AARF-21-848511)the Agència de Gestiód’Ajuts Universitaris i de Recerca(AGAUR)for her FI-SDUR fellowship(2021FISDU 00182).
文摘Dysregulation of G9a,a histone-lysine N-methyltransferase,has been observed in Alzheimer’s disease and has been correlated with increased levels of chronic inflammation and oxidative stress.Likewise,microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis,especially in multifactorial diseases such as Alzheimer’s disease.Therefore,our aim has been to provide partial insights into the interconnection between G9a,microRNAs,oxidative stress,and neuroinflammation.To better understand the biology of G9a,we compared the global microRNA expression between senescence-accelerated mouse-prone 8(SAMP8)control mice and SAMP8 treated with G9a inhibitor UNC0642.We found a downregulation of miR-128 after a G9a inhibition treatment,which interestingly binds to the 3′untranslated region(3′-UTR)of peroxisome-proliferator activator receptor γ(PPARG)mRNA.Accordingly,Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group.We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor.To confirm these antioxidant effects,we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult.In this setting,treatment with G9a inhibitor increases both cell survival and antioxidant enzymes.Moreover,up-regulation of PPARγby G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis.In addition,we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression.Finally,PPARγ/GADD45αpotentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition.Altogether,we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due,at least in part,by the modulation of PPARγ-dependent pathways by miR-128.
基金supported by the National Basic Research Program of China (973 Program) (No. 2005CB523501)
文摘Based on the theory of constitution of Traditional Chinese Medicine (TCM), the human population is divided into nine constitutions including one balanced constitution (Normality) and eight unbalanced constitutions (Yang-deficiency, Yin-deficiency, Phlegm-wetness, Qi-deficiency, Wetness-heat, Blood stasis, Depressed constitution, and Inherited special constitution). Different constitutions have specific metabolic features and different susceptibility to certain diseases. However, whether a genetic basis accounts for such constitution classification is yet to be determined. Here we performed a genetic study to assess the association between genetic variations of metabolic genes including PPARD, PPARG and APM1 and the constitutions. A total of 233 individuals of the Han population in China were classified into four groups, Normality, Yang-deficiency, Yin-deficiency and Phlegm-wetness with whom 23 single nucleotide polymorphisms (SNPs) in the three genes were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Biased distribution of PPARD rs2267669 and rs2076167, APM1 rs7627128 and rs1063539 in Yang-deficiency, PPARG Prol2Ala in Yin-deficiency and PPARD rs2076167, APMI rs266729 and rs7627128 in Phlegm-wetness were observed. The frequencies of Haplotypel3 (Hapl3) of PPARG in Yin-deficiency, Hap25 of APM1 in Yang-deficiency and Hap2 of PPARD and Hapl4 of PPARG in Phlegm-wetness, were significantly different from those in Normality, suggesting those might be group-associated haplotypes. These results suggested that single SNP and haplotypes ofPPARD, PPARG and APM1 may underlie the genetic basis of the constitutions classified in TCM.
文摘Background KCNJ11, ABCC8, PPARG, and HNF4A have been found to be associated with type 2 diabetes in populations with different genetic backgrounds. The aim of this study was to test, in a Chinese Han population from Beijing, whether the genetic variants in these four genes were associated with genetic predisposition to type 2 diabetes. Methods We studied the association of four representative SNPs in KCNJ11, ABCC8, PPARG, and HNF4A by genotyping them using ABI SNaPshot Multiplex System in 400 unrelated type 2 diabetic patients and 400 unrelated normoglycaemic subjects. Results rs5219(E23K) in KCNJ11 was associated with genetic susceptibility to type 2 diabetes (OR=1.400 with 95% CI 1.117 1.755, P=0.004 under an additive model, 0R=1.652 with 95% CI 1.086 2.513, P=0.019 under a recessive model, and OR=1.521 with 95% Cl 1.089 2.123, P=0.014 under a dominant model) after adjusting for sex and body mass index (BMI). We did not find evidence of association for ABCC8 rs1799854, PPARG rs1801282 (Pro12Ala) and HNF4A rs2144908. Genotype-phenotype correlation analysis revealed that rs1799854 in ABCC8 was associated with 2-hour postprandial insulin secretion (P=0.005) after adjusting for sex, age and BMI. Although no interactions between the four variants on the risk of type 2 diabetes were detected, the multiplicative interaction between PPARG Pro12Ala and HNF4A rs2144908 was found to be associated with 2-hour postprandial insulin (P=-0.004 under an additive model for rs2144908; and P=0.001 under a dominant model for rs2144908) after adjusting for age, sex and BMI, assuming a dominant model for PPARG Pro12Ala. Conclusions Our study replicated the association of rs5219 in KCNJ11 with type 2 diabetes in Chinese Han population in Beijing. And we also observed that ABCC8 as well as the interaction between PPARG and HNF4A may contribute to post-challenge insulin secretion.
基金supported by grants from the National Key Research and Development Project(2020YFA0803800 to JL,2018YFE0113500 to JX)National Natural Science Foundation of China(82020108002 and 81911540486 to JX)+2 种基金Innovation Program of Shanghai Municipal Education Commission(2017-01-07-00-09-E00042 to JX)Science and Technology Commission of Shanghai Municipality(20DZ2255400 and 18410722200 to JX)the“Dawn”Program of the Shanghai Education Commission(19SG34 to JX).
文摘Background:Exercise is beneficial for muscle atrophy.Peroxisome proliferator-activated receptor gamma(PPARγ) and microRNA-29 b(miR-29 b) have been reported to be responsible for angiotensinⅡ(AngⅡ)-induced muscle atrophy.However,it is unclear whether exercise can protect AngⅡ-induced muscle atrophy by targeting PPARγ/miR-29 b.Methods:Skeletal muscle atrophy in both the control group and the run group was established by AngⅡ infusion;after 1 week of exercise training,the mice were sacrificed,and muscle weight was determined.Myofiber size was measured by hematoxylin-eosin and wheat-germ agglutinin staining.Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling staining.The expression level of muscle atrogenes,including F-box only protein 32(FBXO32,also called Atrogin-1) and muscle-specific RING-finger 1(MuRF-1),the phosphorylation level of protein kinase B(PKB,also called AKT)/forkhead box 03 A(FOX03 A)/mammalian target of rapamycin(mTOR) pathway proteins,the expression level of PPARγ and apoptosis-related proteins,including B-cell lymphoma-2(Bcl-2),Bcl-2-associated X(Bax),cysteine-aspartic acid protease 3(caspase-3),and cleaved-caspase-3,were determined by western blot.The expression level of miR-29 b was checked by reversetranscription quantitative polymerase chain reaction.A PPARγ inhibitor(T0070907) or adeno-associated virus serotype-8(AAV8)-mediated miR-29 b overexpression was used to demonstrate whether PPARγ activation or miR-29 b inhibition mediates the beneficial effects of exercise in AngⅡ-induced muscle atrophy.Results:Exercise can significantly attenuate AngⅡ-induced muscle atrophy,which is demonstrated by increased skeletal muscle weight,cross-sectional area of myofiber,and activation of AKT/mTOR signaling and by decreased atrogenes expressions and apoptosis.In AngⅡ-induced muscle atrophy mice models,PPARγ was elevated whereas miR-29 b was decreased by exercise.The protective effects of exercise in AngⅡ-induced muscle atrophy were inhibited by a PPARγ inhibitor(T0070907) or adeno-associated virus serotype-8(AAV8)-mediated miR-29 b overexpression.Conclusion:Exercise attenuates AngⅡ-induced muscle atrophy by activation of PPARγ and suppression of miR-29 b.