We studied the role of oxygen in Pr2 CuO_(4±δ) thin films fabricated by the polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr2 CuO_(4±δ) samples were systematically inves...We studied the role of oxygen in Pr2 CuO_(4±δ) thin films fabricated by the polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr2 CuO_(4±δ) samples were systematically investigated. It was found that with decreasing oxygen content, the low-temperature Hall coefficient(RH) and magnetoresistance changed from negative to positive, similar to those with the increase of Ce-doped concentration in R_(2-x)Ce_x CuO_4 (R = La, Nd, Pr, Sm, Eu). In addition, we observed that the dependence of the superconducting critical temperature Tc with RH for the Pr_(2-x) Ce_x CuO_4 perfectly overlapped with that of Pr_2 CuO_(4±δ) . These findings point to the fact that the doped electrons induced by the oxygen removal are responsible for the superconductivity of the T-phase parent compounds.展开更多
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2015CB921000,2016YFA0300301,2017YFA0303003,and2018YFB0704100)the National Natural Science Foundation of China(Grant Nos.11674374 and 11474338)+2 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH008)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB07020100 and XDB07030200)the Beijing Municipal Science and Technology Project,China(Grant No.Z161100002116011)
文摘We studied the role of oxygen in Pr2 CuO_(4±δ) thin films fabricated by the polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr2 CuO_(4±δ) samples were systematically investigated. It was found that with decreasing oxygen content, the low-temperature Hall coefficient(RH) and magnetoresistance changed from negative to positive, similar to those with the increase of Ce-doped concentration in R_(2-x)Ce_x CuO_4 (R = La, Nd, Pr, Sm, Eu). In addition, we observed that the dependence of the superconducting critical temperature Tc with RH for the Pr_(2-x) Ce_x CuO_4 perfectly overlapped with that of Pr_2 CuO_(4±δ) . These findings point to the fact that the doped electrons induced by the oxygen removal are responsible for the superconductivity of the T-phase parent compounds.