Microwave dielectric ceramics(MWDCs)with low dielectric constant and low dielectric loss are desired in contemporary society,where the communication frequency is developing to high frequency(sub-6G).Herein,Nd_(2)(Zr_(...Microwave dielectric ceramics(MWDCs)with low dielectric constant and low dielectric loss are desired in contemporary society,where the communication frequency is developing to high frequency(sub-6G).Herein,Nd_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(NZ_(1−x)T_(x)M,x=0.02-0.10)ceramics were prepared through a solid-phase process.According to X-ray diffraction(XRD)patterns,the ceramics could form a pure crystal structure with the R3c(167)space group.The internal parameters affecting the properties of the ceramics were calculated and analyzed by employing Clausius-Mossotti relationship,Shannon’s rule,and Phillips-van Vechten-Levine(P-V-L)theory.Furthermore,theoretical dielectric loss of the ceramics was measured and analyzed by a Fourier transform infrared(IR)radiation spectrometer.Notably,when x=0.08 and sintered at 700℃,optimal microwave dielectric properties of the ceramics were obtained,including a dielectric constant(ε_(r))=10.94,Q·f=82,525 GHz(at 9.62 GHz),and near-zero resonant frequency temperature coefficient(τ_(f))=−12.99 ppm/℃.This study not only obtained an MWDC with excellent properties but also deeply analyzed the effects of Ti^(4+)on the microwave dielectric properties and chemical bond characteristics of Nd_(2)Zr_(3)(MoO_(4))_(9)(NZM),which laid a solid foundation for the development of rare-earth molybdate MWDC system.展开更多
Pr_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(x=0.1-1.0)ceramics were prepared via a conventional solid-state method,the dependence of crystal structure and bond characteristics on microwave dielectric properties was invest...Pr_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(x=0.1-1.0)ceramics were prepared via a conventional solid-state method,the dependence of crystal structure and bond characteristics on microwave dielectric properties was investigated systemically.The X-ray diffraction patterns indicated that the single-phase Pr_(2)Zr_(3)(MoO_(4))_(9)structure was formed in all the specimens.As the Ti^(4+)content increased,the lattice volume gradually decreased,which was ascribed to the fact that the ionic radius of Ti^(4+)was smaller than that of Zr^(4+).Notably,outstanding microwave dielectric properties withεr of 10.73-16.35,Q·f values of 80,696-18,726 GHz and minorτ_(f) values−14.1-−2.6 ppm/℃were achieved in Pr_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)ceramics.Theε_(r) increased with the rising x values,which was associated with the increase ofα/Vm values.The decreasing Q·f was affected by the decline of lattice energy of[Zr/TiO_(6)]octahedral.Theτf value was dominated by[Zr/TiO_(6)]octahedral distortion,Mo-O bond energy,bond strength and B-site bond valence.Furthermore,infrared reflection spectra suggested that the properties were mainly caused by the absorption of phonon,and the dielectric loss could be further reduced by optimizing the experimental process.展开更多
Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their mic...Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their microstructures, sintering behaviors, and microwave dielectric properties were systematically investigated. On the basis of the X-ray diffraction (XRD) results, all the samples were matched well with Pr_(2)Zr_(3)(MoO_(4))_(9) structures, which belonged to the space group R3¯c. The lattice parameters were obtained using the Rietveld refinement method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips—Van Vechten—Levine (P—V—L) theory. Excellent dielectric properties of Ce_(2)[Zr_(0.94)(Al_(1/2)Ta_(1/2))_(0.06)]_(3)(MoO_(4))_(9) with a relative permittivity (ε_(r)) of 10.46, quality factor (Q × f) of 83,796 GHz, and temperature coefficient of resonant frequency (τ_(f)) of −11.50 ppm/℃ were achieved at 850 ℃.展开更多
NASICON型快离子导体Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)具有较高的离子电导率、较宽的电化学窗口及良好的水和空气稳定性,但其界面接触性能差。石榴石型Li_(7)La_(3)Zr_(2)O_(12)(LLZO)锂离子电导率高、电化学窗口较宽且热稳定...NASICON型快离子导体Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)具有较高的离子电导率、较宽的电化学窗口及良好的水和空气稳定性,但其界面接触性能差。石榴石型Li_(7)La_(3)Zr_(2)O_(12)(LLZO)锂离子电导率高、电化学窗口较宽且热稳定性好,但其立方相结构不稳定,影响其实际应用。采用溶液浇筑法,制备纯PVDF-LiTFSI电解质膜和以PVDF为基、3种不同质量比的Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)的固态电解质膜,并探讨纯PVDF-LiTFSI电解质膜和3种不同质量比的活性无机电解质填料对复合固态电解质离子电导率的影响。结果表明,Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1时,电解质膜的XRD图谱的衍射峰比纯PVDF-LiTFSI下降更为明显,电化学窗口为3.9 V左右,表现出更好的稳定性。在不同温度下分别测量其离子电导率发现,Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1时的电解质膜均高于纯PVDF-LiTFSI电解质膜和Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为2∶1和3∶1时的电解质膜。将其装配成电池后发现,0.1C下电池首次充放电比容量分别为90 m A·h/g和87 m A·h/g。以0.5C的电流循环25圈,放电比容量从57 mA·h/g衰减至51mA·h/g,容量保持率为99.7%。所以,以PVDF为基、Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1的固态电解质膜有优良的倍率性能和循环稳定性能。展开更多
In this study,a sequence of Ce_(2)[Zr_(1-x)(Co_(1/2)W_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZ_(1-x)(CW)_(x)M)(x=0.02e0.10)ceramics with excellent microwave dielectric properties were obtained by the traditional solid-phase me...In this study,a sequence of Ce_(2)[Zr_(1-x)(Co_(1/2)W_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZ_(1-x)(CW)_(x)M)(x=0.02e0.10)ceramics with excellent microwave dielectric properties were obtained by the traditional solid-phase method.The crystal structure,dielectric properties,and chemical bond characters of the ceramics were characterized and analyzed.X-ray diffraction and Rietveld refinement analysis show that CZ_(1-x)(CW)_(x)M could form a single-phase of the triangular crystal system in the entire doping range.The microstructure of the ceramic samples was obtained by scanning electron microscopy.The sintering temperature was reduced and the gain of the sample was refined as the increase of doping ion content.Furthermore,the intrinsic factors affecting the properties of CZ_(1-x)(CW)_(x)M were analyzed by employing P-V-L theory and through in-depth infrared analysis.When x was 0.04 and the sintering temperature was 750C,the best dielectric properties of the samples were achieved,includingεr=9.95,Q·f=80,803 GHz(at 9.99 GHz),and tf=-9.10 ppm/℃.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51972143 and 52272126)State Key Laboratory of New Ceramics and Fine Processing,Tsinghua University (No.KFZD202101).
文摘Microwave dielectric ceramics(MWDCs)with low dielectric constant and low dielectric loss are desired in contemporary society,where the communication frequency is developing to high frequency(sub-6G).Herein,Nd_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(NZ_(1−x)T_(x)M,x=0.02-0.10)ceramics were prepared through a solid-phase process.According to X-ray diffraction(XRD)patterns,the ceramics could form a pure crystal structure with the R3c(167)space group.The internal parameters affecting the properties of the ceramics were calculated and analyzed by employing Clausius-Mossotti relationship,Shannon’s rule,and Phillips-van Vechten-Levine(P-V-L)theory.Furthermore,theoretical dielectric loss of the ceramics was measured and analyzed by a Fourier transform infrared(IR)radiation spectrometer.Notably,when x=0.08 and sintered at 700℃,optimal microwave dielectric properties of the ceramics were obtained,including a dielectric constant(ε_(r))=10.94,Q·f=82,525 GHz(at 9.62 GHz),and near-zero resonant frequency temperature coefficient(τ_(f))=−12.99 ppm/℃.This study not only obtained an MWDC with excellent properties but also deeply analyzed the effects of Ti^(4+)on the microwave dielectric properties and chemical bond characteristics of Nd_(2)Zr_(3)(MoO_(4))_(9)(NZM),which laid a solid foundation for the development of rare-earth molybdate MWDC system.
基金supported by the National Natural Science Foundation of China(No.51972143)supported by State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KFZD202101)。
文摘Pr_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(x=0.1-1.0)ceramics were prepared via a conventional solid-state method,the dependence of crystal structure and bond characteristics on microwave dielectric properties was investigated systemically.The X-ray diffraction patterns indicated that the single-phase Pr_(2)Zr_(3)(MoO_(4))_(9)structure was formed in all the specimens.As the Ti^(4+)content increased,the lattice volume gradually decreased,which was ascribed to the fact that the ionic radius of Ti^(4+)was smaller than that of Zr^(4+).Notably,outstanding microwave dielectric properties withεr of 10.73-16.35,Q·f values of 80,696-18,726 GHz and minorτ_(f) values−14.1-−2.6 ppm/℃were achieved in Pr_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)ceramics.Theε_(r) increased with the rising x values,which was associated with the increase ofα/Vm values.The decreasing Q·f was affected by the decline of lattice energy of[Zr/TiO_(6)]octahedral.Theτf value was dominated by[Zr/TiO_(6)]octahedral distortion,Mo-O bond energy,bond strength and B-site bond valence.Furthermore,infrared reflection spectra suggested that the properties were mainly caused by the absorption of phonon,and the dielectric loss could be further reduced by optimizing the experimental process.
基金This work was supported by Shandong Postdoctoral Innovative Talents Support Plan(No.SDBX2020010)the National Natural Science Foundation of China(No.U1806221)+2 种基金Shandong Provincial Natural Science Foundation(No.ZR2020KA003)the Project of“20 Items of University”of Jinan(No.2019GXRC017)This work was also supported by the National Natural Science Foundation of China(No.51972143).
文摘Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their microstructures, sintering behaviors, and microwave dielectric properties were systematically investigated. On the basis of the X-ray diffraction (XRD) results, all the samples were matched well with Pr_(2)Zr_(3)(MoO_(4))_(9) structures, which belonged to the space group R3¯c. The lattice parameters were obtained using the Rietveld refinement method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips—Van Vechten—Levine (P—V—L) theory. Excellent dielectric properties of Ce_(2)[Zr_(0.94)(Al_(1/2)Ta_(1/2))_(0.06)]_(3)(MoO_(4))_(9) with a relative permittivity (ε_(r)) of 10.46, quality factor (Q × f) of 83,796 GHz, and temperature coefficient of resonant frequency (τ_(f)) of −11.50 ppm/℃ were achieved at 850 ℃.
文摘NASICON型快离子导体Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)具有较高的离子电导率、较宽的电化学窗口及良好的水和空气稳定性,但其界面接触性能差。石榴石型Li_(7)La_(3)Zr_(2)O_(12)(LLZO)锂离子电导率高、电化学窗口较宽且热稳定性好,但其立方相结构不稳定,影响其实际应用。采用溶液浇筑法,制备纯PVDF-LiTFSI电解质膜和以PVDF为基、3种不同质量比的Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)的固态电解质膜,并探讨纯PVDF-LiTFSI电解质膜和3种不同质量比的活性无机电解质填料对复合固态电解质离子电导率的影响。结果表明,Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1时,电解质膜的XRD图谱的衍射峰比纯PVDF-LiTFSI下降更为明显,电化学窗口为3.9 V左右,表现出更好的稳定性。在不同温度下分别测量其离子电导率发现,Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1时的电解质膜均高于纯PVDF-LiTFSI电解质膜和Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为2∶1和3∶1时的电解质膜。将其装配成电池后发现,0.1C下电池首次充放电比容量分别为90 m A·h/g和87 m A·h/g。以0.5C的电流循环25圈,放电比容量从57 mA·h/g衰减至51mA·h/g,容量保持率为99.7%。所以,以PVDF为基、Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1的固态电解质膜有优良的倍率性能和循环稳定性能。
基金This work was supported by the National Natural Science Foundation of China(No.51972143,51872119)This project is supported by State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KFZD202101).
文摘In this study,a sequence of Ce_(2)[Zr_(1-x)(Co_(1/2)W_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZ_(1-x)(CW)_(x)M)(x=0.02e0.10)ceramics with excellent microwave dielectric properties were obtained by the traditional solid-phase method.The crystal structure,dielectric properties,and chemical bond characters of the ceramics were characterized and analyzed.X-ray diffraction and Rietveld refinement analysis show that CZ_(1-x)(CW)_(x)M could form a single-phase of the triangular crystal system in the entire doping range.The microstructure of the ceramic samples was obtained by scanning electron microscopy.The sintering temperature was reduced and the gain of the sample was refined as the increase of doping ion content.Furthermore,the intrinsic factors affecting the properties of CZ_(1-x)(CW)_(x)M were analyzed by employing P-V-L theory and through in-depth infrared analysis.When x was 0.04 and the sintering temperature was 750C,the best dielectric properties of the samples were achieved,includingεr=9.95,Q·f=80,803 GHz(at 9.99 GHz),and tf=-9.10 ppm/℃.