The cathode material Pr0.7Sr0.3Co1-yCuyO3-δ (y=0.05~0.3) was synthesized by a sol-gel method. X-ray diffraction indicated that the samples with y≤0.2 were single phase orthorhombic perovskite structure, but in the ...The cathode material Pr0.7Sr0.3Co1-yCuyO3-δ (y=0.05~0.3) was synthesized by a sol-gel method. X-ray diffraction indicated that the samples with y≤0.2 were single phase orthorhombic perovskite structure, but in the case of y=0.3, traces of a second phase were observed. The unit cell volumes increased with increasing copper content. The electrical conductivity decreased gradually with increasing Cu addition. The investigation of the electrochemical performance suggested that the sample with y=0.1 exhibited the lowest overpotential in all prepared Pr0.7Sr0.3Co1-yCuyO3-δ. With Pr0.7Sr0.3Co0.9Cu0.1O3-δ cathode and porous NiO/Ce0.8Sm0.2O1.9 anode, the single cell based on SDC thin film electrolyte was obtained by a simple dry pressing process. Maximum power densities of the cell were 406 and 481 mW·cm-2 at 700 and 750 ℃, respectively.展开更多
采用快速液相烧结法制备Bi_(1-x)Pr_(x)Fe_(1-x)Ti_(x)O_(3)(x=0.00、0.03、0.06、0.12)系列多铁陶瓷样品,研究Pr-Ti共掺杂对BiFe O_(3)结构、缺陷、电学和磁学特性的影响。XRD分析结果表明:所有样品均为菱方钙钛矿结构,Pr-Ti共掺杂可...采用快速液相烧结法制备Bi_(1-x)Pr_(x)Fe_(1-x)Ti_(x)O_(3)(x=0.00、0.03、0.06、0.12)系列多铁陶瓷样品,研究Pr-Ti共掺杂对BiFe O_(3)结构、缺陷、电学和磁学特性的影响。XRD分析结果表明:所有样品均为菱方钙钛矿结构,Pr-Ti共掺杂可有效抑制杂相生成,当掺杂量高于0.06时杂相基本消失,共掺杂引起结构畸变。正电子湮没寿命谱测试结果表明:所有样品中均存在阳离子空位型缺陷,空位尺寸和浓度均随Pr-Ti掺杂量增加而增大。电学和磁学性能测试结果表明:适量Pr-Ti共掺杂可有效提高Bi Fe O_(3)的介电、铁电和磁学性能。综合上述结果,认为BiFeO_(3)多铁性能的改善可能是由于Pr-Ti共掺杂引起晶格畸变、减少氧空位浓度、改变阳离子空位浓度等多种原因引起。展开更多
The strong pyrocatalytic dye decomposition of the BaTiO_(3)/Pr_(2)O_(3) heterojunction catalyst under cold–hot alternation conditions has been demonstrated in this work.For pure BaTiO_(3) nanofibers,~54%rhodamine B(R...The strong pyrocatalytic dye decomposition of the BaTiO_(3)/Pr_(2)O_(3) heterojunction catalyst under cold–hot alternation conditions has been demonstrated in this work.For pure BaTiO_(3) nanofibers,~54%rhodamine B(RhB)dye is decomposed under the cold–hot alternation of 29–57℃.With the loading content of Pr_(2)O_(3) increases from 0 to 4 wt%,the pyrocatalytic decomposition ratio of RhB solution increases first and then decreases,eventually achieving a maximum of 91%at 3 wt%.The enhanced pyrocatalytic performance after loading Pr_(2)O_(3) can be attributed to an internal electric field of the heterojunction,which effectively separates positive and negative charges.The strongly pyrocatalytic performance of BaTiO_(3)/Pr_(2)O_(3) makes it hopeful for applications in the dye wastewater treatment through harvesting the environmental cold–hot temperature alternation thermal energy in future.展开更多
The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy...The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.展开更多
Pr_(0.5)Sr_(0.5)FeO_(3)(PSFO)and La_(0.25)Pr_(0.25)Sr_(0.5)FeO_(3)(LPSFO)nanofibers are prepared by electrospinning followed by calcination,and their morphologies,microstructures,electronic transports,and magnetic pro...Pr_(0.5)Sr_(0.5)FeO_(3)(PSFO)and La_(0.25)Pr_(0.25)Sr_(0.5)FeO_(3)(LPSFO)nanofibers are prepared by electrospinning followed by calcination,and their morphologies,microstructures,electronic transports,and magnetic properties are studied systematically.The temperature-dependent resistance curves of PSFO and LPSFO nanofibers are measured in a temperature range from 300 K to 10 K.With the temperature lowering,the resistance increases gradually and then decreases sharply due to the occurrence of ferromagnetic metal phase.The metal-insulator transition temperatures are about 110 K and 180 K for PSFO and LPSFO nanofibers,respectively.The electronic conduction behavior above the transition temperature can be described by one-dimensional Mott’s variable-range hopping(VRH)model.The hysteresis loops and the field-cooled(FC)and zero-field-cooled(ZFC)curves show that both PSFO nanofiber and LPSFO nanofiber exhibit ferromagnetism.Although the doping of La reduces the overall magnetization intensity of the material,it increases the ferromagnetic ratio of the system,which may improve the performance of LPSFO in solid oxide fuel cell.展开更多
The La0.67Sr0.33MnO3 +δ/Pr0.7Ca0.3MnO3 +δ/La0.67Sr0.33MnO3 +δ(LPL) trilayered films on (100)LaA-1O3 substrates are prepared by using direct current (DC) magnetron sputtering method. The results obtained by means of...The La0.67Sr0.33MnO3 +δ/Pr0.7Ca0.3MnO3 +δ/La0.67Sr0.33MnO3 +δ(LPL) trilayered films on (100)LaA-1O3 substrates are prepared by using direct current (DC) magnetron sputtering method. The results obtained by means of X-ray powder diffractometer show that all films are the high quality epitaxial films. The results gained by SQUID magnetometer indicate that there is a magnetic coupling in the LPL trilayered films. The resistivities of LSMO, PC-MO and LPL films are measured using standard four-probe method and analyzed log ρ/T curve. From the results it is concluded that the middle-layered PCMO which is ferromagnetic may play a role of intra-magnetic field, which weakens the paramagnetism of LSMO film, lowers ρmax and enlarges Tp which is the transition temperature from metal to insulator, just as the applied magnetic field does. And the middle-layered PCMO may induce the change of the density of states in the LSMO' s gap. The two reasons above make the resistivity and Tp of the samples in zero field change with the thickness of PCMO layers.展开更多
基金the National Natural Science Foundation of China (10674034)
文摘The cathode material Pr0.7Sr0.3Co1-yCuyO3-δ (y=0.05~0.3) was synthesized by a sol-gel method. X-ray diffraction indicated that the samples with y≤0.2 were single phase orthorhombic perovskite structure, but in the case of y=0.3, traces of a second phase were observed. The unit cell volumes increased with increasing copper content. The electrical conductivity decreased gradually with increasing Cu addition. The investigation of the electrochemical performance suggested that the sample with y=0.1 exhibited the lowest overpotential in all prepared Pr0.7Sr0.3Co1-yCuyO3-δ. With Pr0.7Sr0.3Co0.9Cu0.1O3-δ cathode and porous NiO/Ce0.8Sm0.2O1.9 anode, the single cell based on SDC thin film electrolyte was obtained by a simple dry pressing process. Maximum power densities of the cell were 406 and 481 mW·cm-2 at 700 and 750 ℃, respectively.
文摘采用快速液相烧结法制备Bi_(1-x)Pr_(x)Fe_(1-x)Ti_(x)O_(3)(x=0.00、0.03、0.06、0.12)系列多铁陶瓷样品,研究Pr-Ti共掺杂对BiFe O_(3)结构、缺陷、电学和磁学特性的影响。XRD分析结果表明:所有样品均为菱方钙钛矿结构,Pr-Ti共掺杂可有效抑制杂相生成,当掺杂量高于0.06时杂相基本消失,共掺杂引起结构畸变。正电子湮没寿命谱测试结果表明:所有样品中均存在阳离子空位型缺陷,空位尺寸和浓度均随Pr-Ti掺杂量增加而增大。电学和磁学性能测试结果表明:适量Pr-Ti共掺杂可有效提高Bi Fe O_(3)的介电、铁电和磁学性能。综合上述结果,认为BiFeO_(3)多铁性能的改善可能是由于Pr-Ti共掺杂引起晶格畸变、减少氧空位浓度、改变阳离子空位浓度等多种原因引起。
基金supported by the National Natural Science Foundation of China(No.22179108)Key Research and Development Projects of Shaanxi Province(Nos.2020GXLH-Z032 and 2022GY-161)+7 种基金Shaanxi Province High-level Talent Introduction Program(Youth Project)Doctoral Research Startup Fund project of Xi’an Polytechnic University(No.107020589)Open Project for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(No.22567627H)Scientific Research Project of Shaanxi Provincial Education Departmentthe Biological Resources Development and the Textile Wastewater Treatment Innovation Team(No.23JP055)Xi’an Key Laboratory of Textile and Chemical Additives Performance Assessment Reward and Subsidy Project(No.2021JH-201-0004)Young Talent Fund of the University Association for Science and Technology in Shaanxi(No.20210424)Research and Development Project fund of Beilin District in Xi’an(No.GX2208).
文摘The strong pyrocatalytic dye decomposition of the BaTiO_(3)/Pr_(2)O_(3) heterojunction catalyst under cold–hot alternation conditions has been demonstrated in this work.For pure BaTiO_(3) nanofibers,~54%rhodamine B(RhB)dye is decomposed under the cold–hot alternation of 29–57℃.With the loading content of Pr_(2)O_(3) increases from 0 to 4 wt%,the pyrocatalytic decomposition ratio of RhB solution increases first and then decreases,eventually achieving a maximum of 91%at 3 wt%.The enhanced pyrocatalytic performance after loading Pr_(2)O_(3) can be attributed to an internal electric field of the heterojunction,which effectively separates positive and negative charges.The strongly pyrocatalytic performance of BaTiO_(3)/Pr_(2)O_(3) makes it hopeful for applications in the dye wastewater treatment through harvesting the environmental cold–hot temperature alternation thermal energy in future.
基金the financial support provided by the Natural Science Foundations in Hebei Province(No.E2018201235)Baoding Science and Technology Planning Project(No.2074P019)+2 种基金Higher Education in Hebei Province School Science and Technology Research Project(No.QN2019209)Horizontal project(horizontal 20230048)2022 Hebei Province and Hebei University College Students Innovation and Entrepreneurship Training Program(Nos.2022265 and 2022266)。
文摘The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51973100 and 11904193)the Fund from the State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University,China(Grant No.RZ2000003334)the National Key Research and Development Project,China(Grant No.2019YFC0121402)。
文摘Pr_(0.5)Sr_(0.5)FeO_(3)(PSFO)and La_(0.25)Pr_(0.25)Sr_(0.5)FeO_(3)(LPSFO)nanofibers are prepared by electrospinning followed by calcination,and their morphologies,microstructures,electronic transports,and magnetic properties are studied systematically.The temperature-dependent resistance curves of PSFO and LPSFO nanofibers are measured in a temperature range from 300 K to 10 K.With the temperature lowering,the resistance increases gradually and then decreases sharply due to the occurrence of ferromagnetic metal phase.The metal-insulator transition temperatures are about 110 K and 180 K for PSFO and LPSFO nanofibers,respectively.The electronic conduction behavior above the transition temperature can be described by one-dimensional Mott’s variable-range hopping(VRH)model.The hysteresis loops and the field-cooled(FC)and zero-field-cooled(ZFC)curves show that both PSFO nanofiber and LPSFO nanofiber exhibit ferromagnetism.Although the doping of La reduces the overall magnetization intensity of the material,it increases the ferromagnetic ratio of the system,which may improve the performance of LPSFO in solid oxide fuel cell.
基金Project supported by the Chinese Academy of Sciences the Foundation of State ScienceTechnology Commission of China
文摘The La0.67Sr0.33MnO3 +δ/Pr0.7Ca0.3MnO3 +δ/La0.67Sr0.33MnO3 +δ(LPL) trilayered films on (100)LaA-1O3 substrates are prepared by using direct current (DC) magnetron sputtering method. The results obtained by means of X-ray powder diffractometer show that all films are the high quality epitaxial films. The results gained by SQUID magnetometer indicate that there is a magnetic coupling in the LPL trilayered films. The resistivities of LSMO, PC-MO and LPL films are measured using standard four-probe method and analyzed log ρ/T curve. From the results it is concluded that the middle-layered PCMO which is ferromagnetic may play a role of intra-magnetic field, which weakens the paramagnetism of LSMO film, lowers ρmax and enlarges Tp which is the transition temperature from metal to insulator, just as the applied magnetic field does. And the middle-layered PCMO may induce the change of the density of states in the LSMO' s gap. The two reasons above make the resistivity and Tp of the samples in zero field change with the thickness of PCMO layers.