The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many...The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many cases researchers set these parameters on the basis of purely empirical laws,assessing their impact(via parametric numerical simulations)is a subject of great importance.In the present work,in particular,two test cases with different characteristics are selected for further evaluation of the role played by these non-dimensional numbers:Burrows-Kurkov case and DLR case.The numerical results indicate that these parameters influence ignition location.Moreover,the temperature distribution is more sensitive to them than to H2O mass fraction and velocity distributions.展开更多
We report a numerical study of the Prandtl-number(Pr)effects in two-dimensional turbulent Rayleigh-Bénard convection.The simulations were conducted in a square box over the Pr range from 0.25 to 100 and over the ...We report a numerical study of the Prandtl-number(Pr)effects in two-dimensional turbulent Rayleigh-Bénard convection.The simulations were conducted in a square box over the Pr range from 0.25 to 100 and over the Rayleigh number(Ra)range from 10^(7) to 10^(10).We find that both the strength and the stability of the large-scale flow decrease with the increasing of Pr,and the flow pattern becomes plume-dominated at high Pr.The evolution in flow pattern is quantified by the Reynolds number(Re),with the Ra and the Pr scaling exponents varying from 0.54 to 0.67 and-0.87 to-0.93,respectively.It is further found that the non-dimensional heat flux at small Ra diverges strongly for different Pr,but their difference becomes marginal as Ra increases.For the thermal boundary layer,the spatially averaged thicknesses for all the Pr numbers can be described byδθ~Ra^(-0.30) approximately,but the local values vary a lot for different Pr,which become more uniform with Pr increasing.展开更多
The direct numerical simulation (DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed. The focus of this paper is on the modulation of the particles on turbule...The direct numerical simulation (DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed. The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers (Pτ = 0.71, 1.5, and 3.0) and a shear Reynolds number (Reτ = 180). Some typical thermal statistics, including normalized mean temperature and their fluctuations, turbulent heat fluxes, Nusselt number and so on, are analyzed. The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number. Two reasons can explain this. First, the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases, and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field. Second, the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number, and the thermal feedback of the particles to turbulence becomes weak.展开更多
Benard convection is studied by the asymptotic expansion methods of singular perturbation theory and the classical energy methods. For ill-prepared initial data, an exact approximating 1 solution with expansions up t...Benard convection is studied by the asymptotic expansion methods of singular perturbation theory and the classical energy methods. For ill-prepared initial data, an exact approximating 1 solution with expansions up to any order are given and the convergence rates O(εm+1/2)and the optimal convergence rates O(εm+1) are obtained respectively. This improves the result of J.G. SHI.展开更多
We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which...We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dlmenslonal FLiemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems.展开更多
This paper constructs a new multiple relaxation time lattice Boltzmann model which is not only for the shocked compressible fluids,but also for the unshocked compressible fluids.To make the model work for unshocked co...This paper constructs a new multiple relaxation time lattice Boltzmann model which is not only for the shocked compressible fluids,but also for the unshocked compressible fluids.To make the model work for unshocked compressible fluids,a key step is to modify the collision operators of energy flux so that the viscous coefficient in momentum equation is consistent with that in energy equation even in the unshocked system.The unnecessity of the modification for systems under strong shock is analyzed.The model is validated by some well-known benchmark tests,including thermal Couette flow,Riemann problem.The first system is unshocked and the latter is shocked.In both systems,the Prandtl number effects are checked.Satisfying agreements are obtained between new model results and analytical ones.展开更多
The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model...The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model is used to describe the flow in the porous medium while the classical boundary layer equations have been exploited in the case of a pure liquid. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. The objective of this study is to examine the influence of the Prandtl number on the hydrodynamic and thermal fields but also on the local Nusselt number and on the boundary layer thickness. For Pr ≤ 0.7 (low) the velocity and the longitudinal temperature increase with the Prandtl number. On the other hand, when Pr ≥ 2 (high) the Prandtl number no longer influences the velocity and the longitudinal temperature. The local Nusselt number increases as the Prandtl number increases and the thickness of the hydrodynamic boundary layer increases as the Prandtl number decreases.展开更多
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number(Pr_t) model for vertical upward flow at supercritical...In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number(Pr_t) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Pr_t on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO_2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Pr_t. By analyzing the predicted results with and without the variable Pr_t model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Pr_t model are quite different from that predicted by a constant Pr_t. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.展开更多
Using seven working fluids, a systematic experimental study was performed to investigate the local convective heat transfer from vertical heaters to impinging circular submerged jets in the range of Reynolds number be...Using seven working fluids, a systematic experimental study was performed to investigate the local convective heat transfer from vertical heaters to impinging circular submerged jets in the range of Reynolds number between 1.17 ×102 and 3.69 × 104 with the emphasis placed on the examination of Prandtl number dependence. Heat transfer coefficiellts at the stagnation point were collected and correlated with the plate held within and beyond the potential core. Radial distribution of the local heat transfer coefficient was measured with five test liquids. Based on the measured profiles of the local heat transfer, a correlation was developed to cover the entire range of the radial distance. Besides the presellt data, the correlations developed in this work were also compared with a large quantity of available data of circular air jets. General agreement was observed between the air data and the correlat ions.展开更多
Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensienal discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of th...Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensienal discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of the holes, i.e diameter D, length L and pitch S/D were studied. Different turbulent heat transfer models based on constant and variable turbulent Prandtl number approaches were considered. The variability of the turbulent Prandtl number Prt in the energy equation was assumed using an algebraic relation proposed by Kays and Crawford, or employing the Abe, Kondoh and Nagano eddy heat diffusivity closure with two differential transport equations for the temperature variance ko and its destruction rate εθ The obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two- equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models.展开更多
Simultaneous free convection above and below a uniformly heated horizontal plate has been widely investigated,both in the case of an isothermal surface,and of a uniformly heated surface,but always assuming only air as...Simultaneous free convection above and below a uniformly heated horizontal plate has been widely investigated,both in the case of an isothermal surface,and of a uniformly heated surface,but always assuming only air as fluid(Pr=0.7).Nevertheless,there are works dealing with horizontal plates whose results show that the Nu dependence on Pr may not be simply expressed by a power law with the same exponent of the Gr one.So it was considered useful to study the Prandtl number influence in the case of the isothermal horizontal strip.Results show that,while for the lower surface of the strip the Nu dependence in Gr can be expressed by a power law with an exponent close to the Gr one,for the upper surface the exponent is sensibly different.Correlating equations related to the investigated situations are proposed.展开更多
Flow and heat transfer characteristic of supercritical carbon dioxide(SCO_(2))are numerically investigated in the horizontal and vertical tubes.TWL turbulent Prandtl number model could well describe the behavior of SC...Flow and heat transfer characteristic of supercritical carbon dioxide(SCO_(2))are numerically investigated in the horizontal and vertical tubes.TWL turbulent Prandtl number model could well describe the behavior of SCO_(2) affected by the buoyancy.Under the cooling condition,the heat transfer performance of SCO_(2) along the upward direction is best and that along the downward direction is worst when bulk fluid temperatures are below the pseudocritical temperature.Reducing the ratio of heat flux to mass flux could decrease the difference of convective heat transfer coefficient in three flow directions.Under the heating condition,heat transfer deterioration only occurs in vertical upward and horizontal flow directions.Heat transfer deterioration of SCO_(2) could be delayed by increasing the mass flux and the deterioration degree is weakened in the second half of tube along the vertical upward flow direction.Compared with the straight tube,the corrugated tube shows better comprehensive thermal performance.展开更多
The method of determining eddy transport coefficients of turbulence is utilized to study how the turbulent Prandtl number Prturb depends upon the molecular Prandtl number Pr and turbulence conditions.A comparison betw...The method of determining eddy transport coefficients of turbulence is utilized to study how the turbulent Prandtl number Prturb depends upon the molecular Prandtl number Pr and turbulence conditions.A comparison between the theoretical prediction and the relevant experimental data is made.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.11721202).
文摘The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many cases researchers set these parameters on the basis of purely empirical laws,assessing their impact(via parametric numerical simulations)is a subject of great importance.In the present work,in particular,two test cases with different characteristics are selected for further evaluation of the role played by these non-dimensional numbers:Burrows-Kurkov case and DLR case.The numerical results indicate that these parameters influence ignition location.Moreover,the temperature distribution is more sensitive to them than to H2O mass fraction and velocity distributions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11961160719,11702128,91752201,and 11772362)the Shenzhen Fundamental Research Program(Grant No.JCYJ20190807160413162)+1 种基金the Fundamental Research Funds for the Central Universities(Sun Yat-sen University under Grant No.19lgzd15)the Department of Science and Technology of Guangdong Province,China(Grant No.2019B21203001).
文摘We report a numerical study of the Prandtl-number(Pr)effects in two-dimensional turbulent Rayleigh-Bénard convection.The simulations were conducted in a square box over the Pr range from 0.25 to 100 and over the Rayleigh number(Ra)range from 10^(7) to 10^(10).We find that both the strength and the stability of the large-scale flow decrease with the increasing of Pr,and the flow pattern becomes plume-dominated at high Pr.The evolution in flow pattern is quantified by the Reynolds number(Re),with the Ra and the Pr scaling exponents varying from 0.54 to 0.67 and-0.87 to-0.93,respectively.It is further found that the non-dimensional heat flux at small Ra diverges strongly for different Pr,but their difference becomes marginal as Ra increases.For the thermal boundary layer,the spatially averaged thicknesses for all the Pr numbers can be described byδθ~Ra^(-0.30) approximately,but the local values vary a lot for different Pr,which become more uniform with Pr increasing.
基金Project supported by the National Natural Science Foundation of China(Nos.11272198 and11572183)
文摘The direct numerical simulation (DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed. The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers (Pτ = 0.71, 1.5, and 3.0) and a shear Reynolds number (Reτ = 180). Some typical thermal statistics, including normalized mean temperature and their fluctuations, turbulent heat fluxes, Nusselt number and so on, are analyzed. The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number. Two reasons can explain this. First, the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases, and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field. Second, the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number, and the thermal feedback of the particles to turbulence becomes weak.
基金Supported by the Natural Science Foundation of Henan Province(092300410150)the Key Youth Teacher Foundation of Department Education of Henan Province(2011GGJS-210)the Key Youth Teacher Foundation of Huanghuai University
文摘Benard convection is studied by the asymptotic expansion methods of singular perturbation theory and the classical energy methods. For ill-prepared initial data, an exact approximating 1 solution with expansions up to any order are given and the convergence rates O(εm+1/2)and the optimal convergence rates O(εm+1) are obtained respectively. This improves the result of J.G. SHI.
基金Supported by the Science Foundations of LCP and CAEP under Grant Nos. 2009A0102005 and 2009B0101012National Natural Science Foundation of China under Grant Nos. 11075021, 11074300, and 11074303+3 种基金National Basic Research Program (973 Program) under Grant No. 2007CB815105Fundamental Research Funds for the Central University under Grant No. 2010YS03Technology Support Program of LangFang under Grant Nos. 2010011029/30/31Science Foundation of NCIAE under Grant No. 2008-ky-13
文摘We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dlmenslonal FLiemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems.
文摘This paper constructs a new multiple relaxation time lattice Boltzmann model which is not only for the shocked compressible fluids,but also for the unshocked compressible fluids.To make the model work for unshocked compressible fluids,a key step is to modify the collision operators of energy flux so that the viscous coefficient in momentum equation is consistent with that in energy equation even in the unshocked system.The unnecessity of the modification for systems under strong shock is analyzed.The model is validated by some well-known benchmark tests,including thermal Couette flow,Riemann problem.The first system is unshocked and the latter is shocked.In both systems,the Prandtl number effects are checked.Satisfying agreements are obtained between new model results and analytical ones.
文摘The numerical study of thin film type condensation in forced convection of a saturated pure vapor in an inclined wall covered with a porous material is presented. The generalized Darcy-Brinkman-Forchheimer (DBF) model is used to describe the flow in the porous medium while the classical boundary layer equations have been exploited in the case of a pure liquid. The dimensionless equations are solved by an implicit finite difference method and the iterative Gauss-Seidel method. The objective of this study is to examine the influence of the Prandtl number on the hydrodynamic and thermal fields but also on the local Nusselt number and on the boundary layer thickness. For Pr ≤ 0.7 (low) the velocity and the longitudinal temperature increase with the Prandtl number. On the other hand, when Pr ≥ 2 (high) the Prandtl number no longer influences the velocity and the longitudinal temperature. The local Nusselt number increases as the Prandtl number increases and the thickness of the hydrodynamic boundary layer increases as the Prandtl number decreases.
基金financially supported by the National Key Research and Development Program of China under Grant No.2016YFB0901405the State Key Program of the National Natural Science Foundation of China(Grant No.51236004)the Science Fund for Creative Research Groups(No.51621062)
文摘In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number(Pr_t) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Pr_t on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO_2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Pr_t. By analyzing the predicted results with and without the variable Pr_t model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Pr_t model are quite different from that predicted by a constant Pr_t. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
文摘Using seven working fluids, a systematic experimental study was performed to investigate the local convective heat transfer from vertical heaters to impinging circular submerged jets in the range of Reynolds number between 1.17 ×102 and 3.69 × 104 with the emphasis placed on the examination of Prandtl number dependence. Heat transfer coefficiellts at the stagnation point were collected and correlated with the plate held within and beyond the potential core. Radial distribution of the local heat transfer coefficient was measured with five test liquids. Based on the measured profiles of the local heat transfer, a correlation was developed to cover the entire range of the radial distance. Besides the presellt data, the correlations developed in this work were also compared with a large quantity of available data of circular air jets. General agreement was observed between the air data and the correlat ions.
文摘Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensienal discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of the holes, i.e diameter D, length L and pitch S/D were studied. Different turbulent heat transfer models based on constant and variable turbulent Prandtl number approaches were considered. The variability of the turbulent Prandtl number Prt in the energy equation was assumed using an algebraic relation proposed by Kays and Crawford, or employing the Abe, Kondoh and Nagano eddy heat diffusivity closure with two differential transport equations for the temperature variance ko and its destruction rate εθ The obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two- equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models.
文摘Simultaneous free convection above and below a uniformly heated horizontal plate has been widely investigated,both in the case of an isothermal surface,and of a uniformly heated surface,but always assuming only air as fluid(Pr=0.7).Nevertheless,there are works dealing with horizontal plates whose results show that the Nu dependence on Pr may not be simply expressed by a power law with the same exponent of the Gr one.So it was considered useful to study the Prandtl number influence in the case of the isothermal horizontal strip.Results show that,while for the lower surface of the strip the Nu dependence in Gr can be expressed by a power law with an exponent close to the Gr one,for the upper surface the exponent is sensibly different.Correlating equations related to the investigated situations are proposed.
文摘Flow and heat transfer characteristic of supercritical carbon dioxide(SCO_(2))are numerically investigated in the horizontal and vertical tubes.TWL turbulent Prandtl number model could well describe the behavior of SCO_(2) affected by the buoyancy.Under the cooling condition,the heat transfer performance of SCO_(2) along the upward direction is best and that along the downward direction is worst when bulk fluid temperatures are below the pseudocritical temperature.Reducing the ratio of heat flux to mass flux could decrease the difference of convective heat transfer coefficient in three flow directions.Under the heating condition,heat transfer deterioration only occurs in vertical upward and horizontal flow directions.Heat transfer deterioration of SCO_(2) could be delayed by increasing the mass flux and the deterioration degree is weakened in the second half of tube along the vertical upward flow direction.Compared with the straight tube,the corrugated tube shows better comprehensive thermal performance.
文摘The method of determining eddy transport coefficients of turbulence is utilized to study how the turbulent Prandtl number Prturb depends upon the molecular Prandtl number Pr and turbulence conditions.A comparison between the theoretical prediction and the relevant experimental data is made.