期刊文献+
共找到2,553篇文章
< 1 2 128 >
每页显示 20 50 100
Deformation mechanism and roof pre-splitting control technology of gob-side entry in thick hard main roof full-mechanized longwall caving panel
1
作者 WANG Hao-sen HE Man-chao +6 位作者 WANG Jiong YANG Gang MAZi-min MING Can WANG Rui FENG Zeng-chao ZHANG Wen-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3206-3224,共19页
This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive appro... This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry. 展开更多
关键词 deformation mechanism hard roof gob-side entry cantilever beam roof pre-spliting
下载PDF
Influencing factors analysis of hard limestone reformation and strength weakening under acidic effect
2
作者 HOU Ming-xiao HUANG Bing-xiang +2 位作者 ZHAO Xing-long JIAO Xue-jie ZHENG Chen-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2446-2466,共21页
Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way t... Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way to control the hard limestone roof.In this study,the effects of various factors on the reaction characteristics and mechanical properties of limestone were analyzed.The results show that the acid with stronger hydrogen production capacity after ionization(pK_(a)<0)has more prominent damage to the mineral grains of limestone.When pKa increases from−8.00 to 15.70,uniaxial compressive strength and elastic modulus of limestone increase by 117.22%and 75.98%.The influence of acid concentration is manifested in the dissolution behavior of mineral crystals,the crystal defects caused by large-scale acid action will lead to the deterioration of limestone strength,and the strength after 15%concentration reformation can be reduced by 59.42%.The effect of acidification time on limestone has stages and is the most obvious in the initial metathesis reaction stage(within 60 min).The key to the strength damage of acidified limestone is the participation of hydrogen ions in the reaction system.Based on the analytic hierarchy process method,the influence weights of acid type,acid concentration and acidification time on strength are 24.30%,59.54% and 16.16%,respectively.The research results provide theoretical support for the acidification control of hard limestone roofs in coal mines. 展开更多
关键词 hard roof acidic effect structural reformation strength weakening influencing factors
下载PDF
Dynamic simulation insights into friction weakening effect on rapid long-runout landslides:A case study of the Yigong landslide in the Tibetan Plateau,China
3
作者 Zi-zheng Guo Xin-yong Zhou +3 位作者 Da Huang Shi-jie Zhai Bi-xia Tian Guang-ming Li 《China Geology》 CAS CSCD 2024年第2期222-236,共15页
This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plate... This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plateau of China was employed as the case,and the derived dynamic friction formula was included into the numerical simulation based on Particle Flow Code.Results showed that the friction decreased quickly from 0.64(the peak)to 0.1(the stead value)during the 5s-period after the sliding initiation,which explained the behavior of rapid movement of the landslide.The monitored balls set at different sections of the mass showed similar variation characteritics regarding the velocity,namely evident increase at the initial phase of the movement,followed by a fluctuation phase and then a stopping one.The peak velocity was more than 100 m/s and most particles had low velocities at 300s after the landslide initiation.The spreading distance of the landslide was calculated at the two-dimension(profile)and three-dimension scale,respectively.Compared with the simulation result without considering friction weakening effect,our results indicated a max distance of about 10 km from the initial unstable position,which fit better with the actual situation. 展开更多
关键词 Rapid long-runout landslide PFC Friction weakening Three-dimension Numerical simulation Tibetan Plateau Hydrogeology Engineering Geological hazards survey engineering
下载PDF
Borehole stability in naturally fractured rocks with drilling mud intrusion and associated fracture strength weakening:A coupled DFN-DEM approach
4
作者 Yaoran Wei Yongcun Feng +4 位作者 Zhenlai Tan Tianyu Yang Xiaorong Li Zhiyue Dai Jingen Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1565-1581,共17页
Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P... Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations. 展开更多
关键词 Borehole stability Naturally fractured rocks weakening of fracture strength Discrete fracture network Distinct element method
下载PDF
Review of Field Weakening Control Strategies of Permanent Magnet Synchronous Motors
5
作者 Runze Jing Gaolin Wang +1 位作者 Guoqiang Zhang Dianguo Xu 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期319-331,共13页
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s... Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control. 展开更多
关键词 Calculation-based methods Field weakening control Model predictive control Permanent magnet synchronous motor OVERMODULATION Voltage closed-loop control
下载PDF
The Weakening of the Asian Monsoon Circulation after the End of 1970's 被引量:93
6
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第3期376-386,共11页
The transition of the global atmospheric circulation in the end of 1970's can clearly be detected in the atmospheric temperature, wind velocity, and so on. Wavelet analysis reveals that the temporal scale of this ... The transition of the global atmospheric circulation in the end of 1970's can clearly be detected in the atmospheric temperature, wind velocity, and so on. Wavelet analysis reveals that the temporal scale of this change is larger than 20 years. Studies in this work indicate that the trend of the transition over the mid-latitude Asia is opposite to that of global average for some variables at the middle troposphere. Another finding of this research is that the African-Asian monsoon circulation is weaker and the trade wind over the tropical eastern Pacific is weaker as well after this transition. Such a signal may be found in the summer precipitation over China as well. Key words Asian monsoon circulation - Weakening - Transition This research was supported by the key project of Chinese Academy of Sciences under Contract KZCX2-203 and the key program of the National Natural Science Foundation of China under Contract 49894170. 展开更多
关键词 Asian monsoon circulation weakening TRANSITION
下载PDF
Modeling of normal faulting in the subducting plates of the Tonga,Japan,Izu-Bonin and Mariana Trenches:implications for near-trench plate weakening 被引量:5
7
作者 ZHOU Zhiyuan LIN Jian ZHANG Fan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期53-60,共8页
The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate... The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief. 展开更多
关键词 normal fault geodynamic model plate weakening flexural bending elasto-plastic deformation
下载PDF
Exploration of weakening mechanism of uniaxial compressive strength of deep sandstone under microwave irradiation 被引量:11
8
作者 YANG Ben-gao GAO Ming-zhong +6 位作者 XIE Jing LIU Jun-jun WANG Fei WANG Ming-yao WANG Xuan WEN Xiang-yue YANG Zhao-ying 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期611-623,共13页
Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to... Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to overcome these problems.This study examines the failure characteristics,weakening law,and breakdown mechanism of deep sandstone(depth=1050 m)samples in a microwave field.The macroscopic and microscopic properties were determined via mechanical tests,mesoscopic tests,and numerical simulations.Microwave application at 1000 W for 60 s reduced the uniaxial compressive strength of the sandstone by 50%.Thermal stress of the sandstone was enhanced by uneven expansion of minerals at the microscale.Moreover,the melting of some minerals in the high-temperature environment changed the pore structure,sharply reducing the macroscopic strength.The temperature remained high in the lower midsection of the sample,and the stress was concentrated at the bottom of the sample and along its axis.These results are expected to improve the efficiency of deep rock breaking,provide theoretical and technical support for similar rock-breakage projects,and accelerate advances in deep-Earth science. 展开更多
关键词 microwave SANDSTONE uniaxial compressive strength weakening mechanism
下载PDF
Evaluation of the weakening behavior of gas on the coal strength and its quantitative influence on the coal deformation 被引量:6
9
作者 Haijun Guo Kai Wang +5 位作者 Yuchen Wu Hanlu Tang Jianguo Wu Lianhe Guan Chenyang Chang Chao Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期451-462,共12页
The coal strength and deformation properties are key factors affecting safe coal mining and highefficiency coalbed methane(CBM)development.In this paper,reconstituted coal samples are chosen to investigate the weakeni... The coal strength and deformation properties are key factors affecting safe coal mining and highefficiency coalbed methane(CBM)development.In this paper,reconstituted coal samples are chosen to investigate the weakening behavior of gas on coal strength,meanwhile,its effects on coal deformation are quantitatively evaluated.The results indicate that the weakening degree of gas on coal strength is closely related to the confining stress and gas pressure.Compared with non-gas-saturated coals,the maximum weakening ratios of adsorbed gas to coal strength are 10.58%,18.12%,8.55%and 14.65%under the conditions of confining stress CS=3 MPa and gas pressure GP=1 MPa,CS=3 MPa and GP=2 MPa,CS=4 MPa and GP=1 MPa,and CS=4 MPa and GP=2 MPa,respectively.Furthermore,the maximum weakening ratios of free gas to coal strength are 18.27%,36.54%,14.79%and 29.58%,respectively,under above four conditions.The maximum coal bulk strain decreases as particle sizes of coal powders increase,and it has a maximum value of 0.0227 and a minimum value of 0.0191 in particle size ranges of 0.01–0.041 and 0.5–1 mm.Under the same conditions,the coal bulk strain increases with increasing gas pressure,revealing that coal deformation properties can be enhanced by gas. 展开更多
关键词 Gas-saturated coal Coal strength weakening effect Coal deformation Quantitative evaluation Mechanical loading
下载PDF
The influence of borehole arrangement of soundless cracking demolition agents(SCDAs)on weakening the hard rock 被引量:6
10
作者 Wei Tang Cheng Zhai +3 位作者 Jizhao Xu Yong Sun Yuzhou Cong Yangfeng Zheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期197-207,共11页
The hard roof difficult to collapse easily causes gas accumulation,which threatens the production safety of coal mine.Therefore,roof pre-cracking is required.Although blasting and hydraulic fracturing can also crack t... The hard roof difficult to collapse easily causes gas accumulation,which threatens the production safety of coal mine.Therefore,roof pre-cracking is required.Although blasting and hydraulic fracturing can also crack the roof,blasting can easily induce rock bursts,whereas hydraulic fracturing needs complex equipment.In contrast,soundless cracking demolition agents(SCDAs)with noise-free,dust-free,and safe characteristics have obvious advantages.The main component of SCDA is calcium oxide,which reacts with water to produce higher expansion pressure.In this paper,focused on the angles of the borehole,the effect of SCDA is analyzed by numerical simulation based on Pingdingshan coal mine.The research results showed that the azimuthal angle a(between borehole projection and the roadway direction)does not significantly affect the efficacy of SCDAs,whereas the influence of borehole elevation angle b is far more significant than that of the azimuthal angle.Therefore,the angle b is a dominant factor influencing the effect of SCDAs.Based on different effects of SCDAs at different angle of boreholes,the weakening unit was established,so the SCDAs could give full play to roof fracturing.Moreover,field tests validated the importance of borehole angle on weakening the hard roofs. 展开更多
关键词 Coal mine Soundless cracking demolition agents Hard roof Numerical simulation Borehole angle weakening unit
下载PDF
Effectiveness analysis of methane-drainage by deep-hole controlled pre-splitting blasting for preventing coal and gas outburst 被引量:5
11
作者 CAO Shu-gang LI Yong +2 位作者 LIU Yan-bao ZHANG Li-qiang XU A-meng 《Journal of Coal Science & Engineering(China)》 2009年第2期166-170,共5页
In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal ... In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results. 展开更多
关键词 coal and gas outburst methane-drainage pore structure deep-hole controlled pre-splitting blasting
下载PDF
Strength weakening effect of high static pre-stressed granite subjected to low-frequency dynamic disturbance under uniaxial compression 被引量:6
12
作者 Wu-xing WU Feng-qiang GONG Quan JIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2353-2369,共17页
This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granit... This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree. 展开更多
关键词 deep rock high static pre-stress low-frequency dynamic disturbance strength weakening effect uniaxial compression ROCKBURST
下载PDF
Experimental investigation on the reformation and strength weakening of hard limestone by acidizing 被引量:3
13
作者 Bingxiang Huang Mingxiao Hou +1 位作者 Xinglong Zhao Yuekun Xing 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期965-979,共15页
Several derivative disasters such as ground pressure disasters and methane explosions can be caused by the hard roof in coal mines.For limestone roofs with fine integrity and extreme hardness,collapse is difficult and... Several derivative disasters such as ground pressure disasters and methane explosions can be caused by the hard roof in coal mines.For limestone roofs with fine integrity and extreme hardness,collapse is difficult and the effect of conventional roof control methods is limited.Acidizing reformation is an effective way to weaken the strength of roof strata based on acid-rock reaction.In this study,the rock strength damage law and acid reaction characteristics were tested by the limestone acidification experiment.Besides,the strength degradation mechanism of limestone under the acidity effect was analyzed.The results show that the acid corrosion characteristics of limestone are obvious,as numerous mineral grains generate voids under the effects of acid corrosion,and more defects are formed inside.The acid-rock reaction is the most intense at the early stage and then gradually reaches dynamic equilibrium,and the acid corrosion rate of limestone is 4.24%(10%HCl,360 min).The hard limestone is damaged after acidification.Furthermore,the internal cracks can be induced to rapid initiation and unstable propagation under load,which reduces the strain required for rock failure by 33.33%.The failure morphology is more complicated,and the uniaxial compressive strength and elastic modulus decrease by 52.42%and 34.44%respectively.The strength weakening of hard roof after acidification is due to the defects such as intergranular cracking caused by the corrosion of rock crystals under acidity effect,which accelerate the initiation and propagation of internal cracks with external force.Macroscopically,acidification induced the deterioration of rock mechanical properties by reforming the roof structure.The feasibility of acidizing reformation method to control hard roof is confirmed in this study. 展开更多
关键词 Hard roof Acidizing reformation Strength weakening Acid-rock reaction Corrosion
下载PDF
Strength weakening and its micromechanism in water–rock interaction,a short review in laboratory tests 被引量:5
14
作者 Cun Zhang Qingsheng Bai +3 位作者 Penghua Han Lei Wang Xiaojie Wang Fangtian Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期18-32,共15页
Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of ... Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale. 展开更多
关键词 Water–rock interaction weakening mechanism Water content Immersion time Wetting–drying cycles Microscopic methods
下载PDF
Application of deep borehole blasting on fully mechanized hard top-coal pre-splitting and gas extraction in the special thick seam 被引量:3
15
作者 Liu Jian Liu Zegong +2 位作者 Xue Junhua Gao Kui Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期755-760,共6页
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas... In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable. 展开更多
关键词 Deep borehole blasting Fully mechanized mining Hard thick coal seam Top-coal pre-splitting Gas extraction
下载PDF
COMPARATIVE ANALYSIS OF THE INTENSIFYING AND WEAKENING LANDFALL TROPICAL CYCLONES DURING EXTRATROPICAL TRANSITION OVER CHINA 被引量:1
16
作者 李侃 徐海明 《Journal of Tropical Meteorology》 SCIE 2015年第1期23-33,共11页
Based on the Tropical Cyclone(TC) Yearbooks data and JRA-25 reanalysis data from the Japan Meteorological Agency(JMA) during 1979-2008, dynamic composite analysis and computation of kinetic energy budget are used to s... Based on the Tropical Cyclone(TC) Yearbooks data and JRA-25 reanalysis data from the Japan Meteorological Agency(JMA) during 1979-2008, dynamic composite analysis and computation of kinetic energy budget are used to study the intensifying and weakening TCs during Extratropical Transition over China. The TCI shows strong upper-level divergence, strengthened low-level convergence and significantly enhanced upward motion under the influence of strong upper-level troughs and high-level jets. The TCI is correspondingly intensified after Extratropical Transition(ET); TCW exhibits strong upper-level divergence, subdued low-level convergence and slightly enhanced upward motion under the influence of weak upper-level troughs and high-level jets. It then weakens after ET. The increase(decrease) of the generation of kinetic energy by divergence wind in TCI(TCW) at low level is one of the major reasons for TCI's intensification(TCW's weakening) after transformation. The generation of kinetic energy by divergence wind is closely related to the development of a low-level baroclinic frontal zone. The growth of the generation of kinetic energy by rotational wind in TCI at upper level is favorable for TCI's maintenance, which is affected by strong upper-level troughs. The dissipation of the generation of kinetic energy by rotational wind in TCW at upper level is unfavorable for TCW's maintenance, which is affected by weak upper-level troughs. 展开更多
关键词 tropical cyclone intensification during extratropical transition weakening during extratropical transition dynamic composite analysis kinetic energy budget
下载PDF
Weakening effect of plastic yielding inception in thin hard coating systems 被引量:1
17
作者 Xiao Huang Shujun Zhou Tianmin Shao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期493-501,共9页
Hard coatings have been widely applied to enhance tribological performance of mechanical components.However,it was predicted that thin hard coatings may have a weakening effect which could reduce the coating/substrate... Hard coatings have been widely applied to enhance tribological performance of mechanical components.However,it was predicted that thin hard coatings may have a weakening effect which could reduce the coating/substrate system’s resistance to plastic yielding compared with the uncoated substrate material.In this paper,analytical simulation is utilized to investigate the origin of weakening effect.The functions of material mechanical properties and coating thickness on the weakening effect are theoretically investigated.Partial-unloading spherical nanoindentation tests are performed on tungsten coated single crystalline silicon and copper to acquire the stress-strain curves and compared with the uncoated cases.The experimental results are in consistence with the analytical solutions,demonstrating the presence of weakening effect. 展开更多
关键词 plastic yielding weakening effect spherical nanoindentation PVD coating
下载PDF
Using the Fractional Order Method to Generalize Strengthening Buffer Operator and Weakening Buffer Operator 被引量:2
18
作者 Lifeng Wu Sifeng Liu Yingjie Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第6期1074-1078,共5页
To reveal the relationship between a weakening buffer operator and strengthening buffer operator, the traditional integer order buffer operator is extended to one that is fractional order. Fractional order buffer oper... To reveal the relationship between a weakening buffer operator and strengthening buffer operator, the traditional integer order buffer operator is extended to one that is fractional order. Fractional order buffer operator not only can generalize the weakening buffer operator and the strengthening buffer operator, but also results in small adjustments of the buffer effect.The effectiveness of the grey model(GM(1,1)) with the fractional order buffer operator is validated by six cases. 展开更多
关键词 Fractional order grey system theory strengthening buffer operator (SBO) weakening buffer operator (WBO)
下载PDF
Hybrid assessment of pre-blasting weakening to horizontal section top coal caving (HSTCC) in steep and thick seams 被引量:4
19
作者 Lai Xingping Shan Pengfei +3 位作者 Cao Jiantao Sun Huan Suo Zhengyong Cui Feng 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期31-37,共7页
Horizontal section top-coal(HSTCC)caving offers a powerful method to efficiently excavate rude coal in steep and thick seams,and pre-blasting weakening has a profound effect on pursuing great production,high efficienc... Horizontal section top-coal(HSTCC)caving offers a powerful method to efficiently excavate rude coal in steep and thick seams,and pre-blasting weakening has a profound effect on pursuing great production,high efficiency and good benefit under particular conditions like a small-scale working face with large-scale sectional caving height.+564-level HSTCC working face in B3–6coal seams of Jiangou Colliery in Urumqi was taken as study case for in situ industrial experiment.Total thickness of seams in the study case is about 50.0 m and average angel here is over 83°.In the industrial experiments,at first we adopted continuous charge machine and emulsion matrix explosive to substitute for traditional blasting schemes for specific geological settings in the study case.Hybrid analyses and assessments with blasting crack propagation analysis,abutment pressure monitoring prediction and economical benefit assessment were attributed to be able to attest pre-blasting weakening effects practically.Meanwhile crack propagation analysis after pre-blasting weakening showed that in all triple monitoring bore holes rock masses of top-coal would be fallen into three stages from the bottom up:fracture zone,plastic zone and elastic zone generally,and fracture toughness respectively in correspondent zones was calculated by the analytical formula:0.5616–0.8806,0.6403–0.9541 and0.7535–1.1900 MPa m1/2after pre-blasting weakening.Pressure monitoring prediction and economical benefit assessment also indicated that it was necessary to introduce the pre-blasting weakening with predominant blasting scheme from both views.For excavation in extremely steep and thick coal seams,relevant results would be a useful tool to study the mechanism of pre-blasting weakening both qualitatively and quantitatively. 展开更多
关键词 Pre-blasting weakening HSTCCS teep and thick seams Explosive scheme In situ hybrid monitoring
下载PDF
A STUDY ON THE MECHANISM OF RAPID WEAKENING OF TYPHOON XANGSANE (0020) OVER THE EAST CHINA SEA
20
作者 钱燕珍 张胜军 陈联寿 《Journal of Tropical Meteorology》 SCIE 2016年第3期352-361,共10页
: Using the National Center for Environmental Prediction reanalysis data on 1.0°×l.0° grids and data from theTropical Cyclone yearbook (2000), a diagnostic analysis and numerical simulation were perf... : Using the National Center for Environmental Prediction reanalysis data on 1.0°×l.0° grids and data from theTropical Cyclone yearbook (2000), a diagnostic analysis and numerical simulation were performed to investigate the characteristics and mechanism underlying the rapid weakening of typhoon Xangsane. The results show that a sharp decline in the intensity of typhoon Xangsane resulted from its movement into the cool sea surface temperature area in the East China Sea, the intrusion of cold air from the mainland into the typhoon, and a rapid increase of the vertical wind shear in the surrounding environment. An important factor that led to the demise of the typhoon was a significant decrease in the moisture transport into the typhoon. Furthermore, the results of the numerical simulation and sensitivity experiments indicate that sea surface temperature largely modulated the rapid weakening of typhoon Xangsane. 展开更多
关键词 TYPHOON Xangsane RAPID weakening DIAGNOSTIC ANALYSIS NUMERICAL simulation structural ANALYSIS
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部