[Objectives]A method for the detection of monensin in poultry and livestock meat by pre-column derivatization-high performance liquid chromatography was established.[Methods]The sample was extracted with chloroform,de...[Objectives]A method for the detection of monensin in poultry and livestock meat by pre-column derivatization-high performance liquid chromatography was established.[Methods]The sample was extracted with chloroform,derivatized with trichloroacetic acid and 2,4-dinitrophenylhydrazine,and centrifuged to obtain a purified solution.A C18 chromatographic column(4.6 mm×150 mm,5μm)was used for separation with(1.5%)acetic acid water∶methanol(volume ratio)=1∶9 as the mobile phase using a DAD detector for detection,and the external standard method was adopted for peak area quantification.[Results]Monensin had good linearity in the concentration range of 5.00-200 mg/L,with the linear correlation coefficient r 2>0.999;the detection limit was 5.00 mg/kg;the relative standard deviation was smaller than 10%;and the recoveries of standard addition experiment were in the range of 75%-110%.[Conclusions]The method has the advantages of simple pretreatment operation,good derivatization effect and fast detection speed,and is suitable for detecting monensin in poultry and livestock meat.展开更多
A rapid and accurate quantitative method of high performance liquid chromatography( HPLC) with fluorescence detector has been developed for the analysis of 18 kinds of amino acids in fresh tea leaves. The samples were...A rapid and accurate quantitative method of high performance liquid chromatography( HPLC) with fluorescence detector has been developed for the analysis of 18 kinds of amino acids in fresh tea leaves. The samples were minced and mixed,and extracted with ultra pure water at 90℃ for 20 min. The 6-aminoquinolyl N-hydroxy-succinimidyl carbamate( AQC) was used as pre-column derivatization reagent. Gradient HPLC separation was performed on a C_(18) column( Symmetry C_(18),3. 9 mm × 15 cm,4 μm). Good linearity between concentrations and peak areas was achieved in the concentration range of 5. 0-250 μmol/L for 18 kinds of amino acids. The method was validated by the analysis of five replicates. The 18 kinds of amino acid standards were spiked in fresh tea leaf samples and the average recovery rate was 86. 25%-109. 05% with relative standard deviations( n = 5) ranging from 6. 03% to 10. 56%. The limit of detection( LOD) for the analytes was0. 05-1. 27 μmol/L. The method was successfully applied to the analysis of the 18 kinds of amino acids in fresh tea leaves from east Dongting and west Dongting mountains in Suzhou. The results indicate that the method is simple,rapid,precise and reliable.展开更多
This paper reported the contents variation analysis ofγ-amino butyric acid(GABA)in Semen sojae praeparatum(SSP)which is a famous traditional Chinese medicine.High performance liquid chromatography(HPLC)was used and G...This paper reported the contents variation analysis ofγ-amino butyric acid(GABA)in Semen sojae praeparatum(SSP)which is a famous traditional Chinese medicine.High performance liquid chromatography(HPLC)was used and GABA was derivatized by online pre-column derivatization with o-phthalaldehyde(OPA).To validate this method,the precision,stability,repeatability and recovery were discussed.In the concentration range from 0.0125 to 0.400 mg/m L,the calibration curve for GABA was linear and the regression equation was obtained with correlation coefficient(R2)of 0.9999.Relatively high levels of GABA exist in SSP and the content changes of GABA at different time points during the fermenting process were detected.At the"yellow cladding"stage,GABA level was very low or even undetectable;the"secondary fermentation"stage witnessed a rapid increase of GABA content to 1.39-5.52 mg/g,which remained stable after 18 days of"secondary fermentation".This study demonstrated that GABA was generated at the"secondary fermentation"stage,revealing the significance and rationality of the"secondary fermentation"stage in the fermenting process of SSP.On the other hand,it suggested the downside of taking soy isoflavones as the only measurement in existing quality assessment and optimization approach for the fermenting process of SSP.展开更多
文摘[Objectives]A method for the detection of monensin in poultry and livestock meat by pre-column derivatization-high performance liquid chromatography was established.[Methods]The sample was extracted with chloroform,derivatized with trichloroacetic acid and 2,4-dinitrophenylhydrazine,and centrifuged to obtain a purified solution.A C18 chromatographic column(4.6 mm×150 mm,5μm)was used for separation with(1.5%)acetic acid water∶methanol(volume ratio)=1∶9 as the mobile phase using a DAD detector for detection,and the external standard method was adopted for peak area quantification.[Results]Monensin had good linearity in the concentration range of 5.00-200 mg/L,with the linear correlation coefficient r 2>0.999;the detection limit was 5.00 mg/kg;the relative standard deviation was smaller than 10%;and the recoveries of standard addition experiment were in the range of 75%-110%.[Conclusions]The method has the advantages of simple pretreatment operation,good derivatization effect and fast detection speed,and is suitable for detecting monensin in poultry and livestock meat.
基金Supported by Open Project of the Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base(201603)Basic Research Project of Application of Suzhou City(SNG201622)
文摘A rapid and accurate quantitative method of high performance liquid chromatography( HPLC) with fluorescence detector has been developed for the analysis of 18 kinds of amino acids in fresh tea leaves. The samples were minced and mixed,and extracted with ultra pure water at 90℃ for 20 min. The 6-aminoquinolyl N-hydroxy-succinimidyl carbamate( AQC) was used as pre-column derivatization reagent. Gradient HPLC separation was performed on a C_(18) column( Symmetry C_(18),3. 9 mm × 15 cm,4 μm). Good linearity between concentrations and peak areas was achieved in the concentration range of 5. 0-250 μmol/L for 18 kinds of amino acids. The method was validated by the analysis of five replicates. The 18 kinds of amino acid standards were spiked in fresh tea leaf samples and the average recovery rate was 86. 25%-109. 05% with relative standard deviations( n = 5) ranging from 6. 03% to 10. 56%. The limit of detection( LOD) for the analytes was0. 05-1. 27 μmol/L. The method was successfully applied to the analysis of the 18 kinds of amino acids in fresh tea leaves from east Dongting and west Dongting mountains in Suzhou. The results indicate that the method is simple,rapid,precise and reliable.
基金the National Natural Science Foundation of China(81660664,82060709,82060699)the Natural Science Foundation of Jiangxi Province(20192ACBL21032,20192BBGL70051)China Scholarship Council(201908360259)。
文摘This paper reported the contents variation analysis ofγ-amino butyric acid(GABA)in Semen sojae praeparatum(SSP)which is a famous traditional Chinese medicine.High performance liquid chromatography(HPLC)was used and GABA was derivatized by online pre-column derivatization with o-phthalaldehyde(OPA).To validate this method,the precision,stability,repeatability and recovery were discussed.In the concentration range from 0.0125 to 0.400 mg/m L,the calibration curve for GABA was linear and the regression equation was obtained with correlation coefficient(R2)of 0.9999.Relatively high levels of GABA exist in SSP and the content changes of GABA at different time points during the fermenting process were detected.At the"yellow cladding"stage,GABA level was very low or even undetectable;the"secondary fermentation"stage witnessed a rapid increase of GABA content to 1.39-5.52 mg/g,which remained stable after 18 days of"secondary fermentation".This study demonstrated that GABA was generated at the"secondary fermentation"stage,revealing the significance and rationality of the"secondary fermentation"stage in the fermenting process of SSP.On the other hand,it suggested the downside of taking soy isoflavones as the only measurement in existing quality assessment and optimization approach for the fermenting process of SSP.