Temporary plugging agent(TPA)is widely used in many fields of petroleum reservoir drilling and production,such as temporary plugging while drilling and petroleum well stimulation by diverting in acidizing or fracturin...Temporary plugging agent(TPA)is widely used in many fields of petroleum reservoir drilling and production,such as temporary plugging while drilling and petroleum well stimulation by diverting in acidizing or fracturing operations.The commonly used TPA mainly includes hard particles,fibers,gels,and composite systems.However,current particles have many limitations in applications,such as insufficient plugging strength and slow degradation rate.In this paper,a degradable pre-formed particle gel(DPPG)was developed.Experimental results show that the DPPG has an excellent static swelling effect and self-degradation performance.With a decrease in the concentration of total monomers or cross-linker,the swelling volume of the synthesized DPPG gradually increases.However,the entire self-degradation time gradually decreases.The increase in 2-acrylamide-2-methylpropanesulfonic acid(AMPS)in the DPPG composition can significantly increase its swelling ratio and shorten the self-degradation time.Moreover,DPPG has excellent high-temperature resistance(150°C)and high-salinity resistance(200,000 mg/L NaCl).Core displacement results show that the DPPG has a perfect plugging effect in the porous media(the plugging pressure gradient was as high as 21.12 MPa),and the damage to the formation after degradation is incredibly minor.Therefore,the DPPG can be used as an up-and-coming TPA in oil fields.展开更多
The deformation and failure mechanism of cylindrical shells and square plate with pre-formed holes under blast loading were investigated numerically by employing the Ansys 17.0 and Ls-Dyna 971.To calibrate the numeric...The deformation and failure mechanism of cylindrical shells and square plate with pre-formed holes under blast loading were investigated numerically by employing the Ansys 17.0 and Ls-Dyna 971.To calibrate the numerical model,the experiments of square plates with pre-formed circle holes were modeled and the numerical results have a good agreement with the experiment data.The calibrated numerical model was used to study the deformation and failure mechanism of cylindrical shells with pre-formed circle holes subjected to blast loading.The structure response and stress field changing process has been divided into four specific stages and the deformation mechanism has been discussed systematically.The local and global deformation curves,degree of damage,change of stress status and failure modes of cylindrical shell and square plate with pre-formed circular holes are obtained,compared and analyzed,it can be concluded as:(1)The transition of tensile stress fields is due to the geometrical characteristic of pre-formed holes and cylindrical shell with arch configuration;(2)The existence of preformed holes not only lead to the increasing of stress concentration around the holes,but also release the stress concentration during whole response process;(3)There are three and two kinds of failure modes for square plate and cylindrical shell with pre-formed holes,respectively.and the standoff distance has a key influence on the forming location of the crack initiating point and the locus of crack propagation;(4)The square plate with pre-formed holes has a better performance than cylindrical shell on blast-resistant capability at a smaller standoff distance,while the influence of pre-formed holes on the reduction of blast-resistant capability of square plate is bigger than that of cylindrical shell.展开更多
In Iwamoto-Harada model the whole phase space is full of fermions. When the momentum distributions of the exciton states are taken into account, the pre-formation probability of light composite particles could be impr...In Iwamoto-Harada model the whole phase space is full of fermions. When the momentum distributions of the exciton states are taken into account, the pre-formation probability of light composite particles could be improved, and the exciton state-dependent pre-formation probability has been proposed. The calculated results indicate that the consideration of the momentum distribution enhances the pre-formation probability of [1, m] configuration, and suppresses that of [ι 〉 1, m] configurations seriously.展开更多
基金This work was supported by the Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20200010)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2019D01B57)+3 种基金the University Scientific Research Project of Xinjiang Uygur Autonomous Region(No.XJEDU2019Y067)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Project(No.2019Q025)the Sichuan Province Regional Innovation Cooperation Project(No.2020YFQ0036)the CNPC Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-04)。
文摘Temporary plugging agent(TPA)is widely used in many fields of petroleum reservoir drilling and production,such as temporary plugging while drilling and petroleum well stimulation by diverting in acidizing or fracturing operations.The commonly used TPA mainly includes hard particles,fibers,gels,and composite systems.However,current particles have many limitations in applications,such as insufficient plugging strength and slow degradation rate.In this paper,a degradable pre-formed particle gel(DPPG)was developed.Experimental results show that the DPPG has an excellent static swelling effect and self-degradation performance.With a decrease in the concentration of total monomers or cross-linker,the swelling volume of the synthesized DPPG gradually increases.However,the entire self-degradation time gradually decreases.The increase in 2-acrylamide-2-methylpropanesulfonic acid(AMPS)in the DPPG composition can significantly increase its swelling ratio and shorten the self-degradation time.Moreover,DPPG has excellent high-temperature resistance(150°C)and high-salinity resistance(200,000 mg/L NaCl).Core displacement results show that the DPPG has a perfect plugging effect in the porous media(the plugging pressure gradient was as high as 21.12 MPa),and the damage to the formation after degradation is incredibly minor.Therefore,the DPPG can be used as an up-and-coming TPA in oil fields.
基金The reported research is financially supported by The National Natural Science Foundation of China under Grant No.11902310 and No.11802292.
文摘The deformation and failure mechanism of cylindrical shells and square plate with pre-formed holes under blast loading were investigated numerically by employing the Ansys 17.0 and Ls-Dyna 971.To calibrate the numerical model,the experiments of square plates with pre-formed circle holes were modeled and the numerical results have a good agreement with the experiment data.The calibrated numerical model was used to study the deformation and failure mechanism of cylindrical shells with pre-formed circle holes subjected to blast loading.The structure response and stress field changing process has been divided into four specific stages and the deformation mechanism has been discussed systematically.The local and global deformation curves,degree of damage,change of stress status and failure modes of cylindrical shell and square plate with pre-formed circular holes are obtained,compared and analyzed,it can be concluded as:(1)The transition of tensile stress fields is due to the geometrical characteristic of pre-formed holes and cylindrical shell with arch configuration;(2)The existence of preformed holes not only lead to the increasing of stress concentration around the holes,but also release the stress concentration during whole response process;(3)There are three and two kinds of failure modes for square plate and cylindrical shell with pre-formed holes,respectively.and the standoff distance has a key influence on the forming location of the crack initiating point and the locus of crack propagation;(4)The square plate with pre-formed holes has a better performance than cylindrical shell on blast-resistant capability at a smaller standoff distance,while the influence of pre-formed holes on the reduction of blast-resistant capability of square plate is bigger than that of cylindrical shell.
文摘In Iwamoto-Harada model the whole phase space is full of fermions. When the momentum distributions of the exciton states are taken into account, the pre-formation probability of light composite particles could be improved, and the exciton state-dependent pre-formation probability has been proposed. The calculated results indicate that the consideration of the momentum distribution enhances the pre-formation probability of [1, m] configuration, and suppresses that of [ι 〉 1, m] configurations seriously.