Objective To investigate the feasibility of vitrification of blastocysts following blastomere biopsy. Methods Among patients undergoing pre-implantation genetic diagnosis (PGD), artificial shrinkage of the blastocoe...Objective To investigate the feasibility of vitrification of blastocysts following blastomere biopsy. Methods Among patients undergoing pre-implantation genetic diagnosis (PGD), artificial shrinkage of the blastocoelic cavity and subsequent vitrification of applicable surplus blastocysts after day-3 blastomere biopsy were performed. According to patient requirements, thawed blastocysts were transferred into patients due to pregnancy failure after fresh embryo transfer, ectopic pregnancy, ovarian hyperstimulation. Results Twenty-four PGD cycles were carried out. According to genetic diagnosis and the development of blastocysts, transfer was cancelled in 7 cycles due to absence of applicable embryos or ovarian hyperstimulation. In the remaining 17 cycles, 26 blastocysts were thawed and transferred, which resulted in 13 implanted (50.0%). Clinical pregnancies were observed in 11 patients (64.71%). Following transfer, 30 applicable blastocysts in 10 cycles were cryopreserved. Six patients received transfer of thawed blastocysts. All 8 thawed embryos survived and were transferred, and singleton pregnancies occurred in 5 patients. Two women delivered healthy infants and 3 pregnancies are ongoing. Conclusion Vitrification with artificial shrinkage is effective for preserving blastocysts following blastomere biopsy.展开更多
A couple with a proband child of GJB2 (encoding the gap junction protein connexin 26)-associated hearing impairment and a previous pregnancy miscarriage sought for a reproductive solution to bear a healthy child. Ou...A couple with a proband child of GJB2 (encoding the gap junction protein connexin 26)-associated hearing impairment and a previous pregnancy miscarriage sought for a reproductive solution to bear a healthy child. Our study aimed to develop a cus- tomized preconception-to-neonate care trajectory to fulfill this clinical demand by integrating preimplantation genetic diagno- sis (PGD), noninvasive prenatal testing (NIPT), and noninvasive prenatal diagnosis (N1PD) into the strategy. Auditory and ge- netic diagnosis of the proband child was carried out to identify the disease causative mutations. The couple then received in-vitro-fertilization treatment, and eight embryos were obtained for day 5 biopsy. PGD was performed by short-tandem-repeat linkage analysis and Sanger sequencing of GJB2 gene. Transfer of a GJB2c.235delC heterozygous embryo resulted in a sin- gleton pregnancy. At the 13th week of gestation, genomic DNA (gDNA) from the trio family and cell-free DNA (cfDNA) from maternal plasma were obtained for assessment of fetal chromosomal aneuploidy and GJB2 mutations. NIPT and NIPD showed the absence of chromosomal aneuploidy and GJB2-associated disease in the fetus, which was later confirmed by inva- sire procedures and postnatal genetic/auditory diagnosis. This strategy successfully prevented the transmission of hearing im- pairment in the newborn, thus providing a valuable experience in reproductive management of similar cases and potentially other monogenic disorders.展开更多
基金funded by Guangxi Zhuang Autonomous Region Natural Science Foundation of China (Grant No. 0897007, 0832183, 0542058)Health Department of Guangxi Zhuang Autonomous Region (Grant No. 200947, Z2007013)
文摘Objective To investigate the feasibility of vitrification of blastocysts following blastomere biopsy. Methods Among patients undergoing pre-implantation genetic diagnosis (PGD), artificial shrinkage of the blastocoelic cavity and subsequent vitrification of applicable surplus blastocysts after day-3 blastomere biopsy were performed. According to patient requirements, thawed blastocysts were transferred into patients due to pregnancy failure after fresh embryo transfer, ectopic pregnancy, ovarian hyperstimulation. Results Twenty-four PGD cycles were carried out. According to genetic diagnosis and the development of blastocysts, transfer was cancelled in 7 cycles due to absence of applicable embryos or ovarian hyperstimulation. In the remaining 17 cycles, 26 blastocysts were thawed and transferred, which resulted in 13 implanted (50.0%). Clinical pregnancies were observed in 11 patients (64.71%). Following transfer, 30 applicable blastocysts in 10 cycles were cryopreserved. Six patients received transfer of thawed blastocysts. All 8 thawed embryos survived and were transferred, and singleton pregnancies occurred in 5 patients. Two women delivered healthy infants and 3 pregnancies are ongoing. Conclusion Vitrification with artificial shrinkage is effective for preserving blastocysts following blastomere biopsy.
基金supported by the National Program on Key Basic Research Project(2014CB943001 and 2012CB944700)the National Natural Science Foundation of China(81120108009 and 81530032)+3 种基金the National Health and Family Planning Commission of the People's Republic of China(201402004)Science and Technology Plan of Guangdong Province(2013B022000005)Guangdong Enterprise Key Laboratory of Human Disease Genomics(2011A060906007)Shenzhen Engineering Laboratory for Birth Defects Screening([2011]861)
文摘A couple with a proband child of GJB2 (encoding the gap junction protein connexin 26)-associated hearing impairment and a previous pregnancy miscarriage sought for a reproductive solution to bear a healthy child. Our study aimed to develop a cus- tomized preconception-to-neonate care trajectory to fulfill this clinical demand by integrating preimplantation genetic diagno- sis (PGD), noninvasive prenatal testing (NIPT), and noninvasive prenatal diagnosis (N1PD) into the strategy. Auditory and ge- netic diagnosis of the proband child was carried out to identify the disease causative mutations. The couple then received in-vitro-fertilization treatment, and eight embryos were obtained for day 5 biopsy. PGD was performed by short-tandem-repeat linkage analysis and Sanger sequencing of GJB2 gene. Transfer of a GJB2c.235delC heterozygous embryo resulted in a sin- gleton pregnancy. At the 13th week of gestation, genomic DNA (gDNA) from the trio family and cell-free DNA (cfDNA) from maternal plasma were obtained for assessment of fetal chromosomal aneuploidy and GJB2 mutations. NIPT and NIPD showed the absence of chromosomal aneuploidy and GJB2-associated disease in the fetus, which was later confirmed by inva- sire procedures and postnatal genetic/auditory diagnosis. This strategy successfully prevented the transmission of hearing im- pairment in the newborn, thus providing a valuable experience in reproductive management of similar cases and potentially other monogenic disorders.