A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanica...A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanical systems.Firstly,the singular points of original signals are eliminated effectively by using the first-order difference method.Then the OVMD method is applied for signal modal decomposition.Furthermore,correlation analysis is conducted to determine the degree of correlation between each mode and the original signal,so as to accurately separate the real operating signal from noise signal.On the basis of theoretical analysis and simulation,an edge node pre-processing system for distributed electromechanical system is designed.Finally,by virtue of the signal-to-noise ratio(SNR)and root-mean-square error(RMSE)indicators,the signal pre-processing effect is evaluated.The experimental results show that the OVMD-based edge node pre-processing system can extract signals with different characteristics and improve the SNR of reconstructed signals.Due to its high fidelity and reliability,this system can also provide data quality assurance for subsequent system health monitoring and fault diagnosis.展开更多
In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.How...The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.However,the complexity of resource allocation is increased because of the large number of tasks and satellites.Therefore,the primary problem of implementing concurrent multiple tasks via LEO mega-constellation is to pre-process tasks and observation re-sources.To address the challenge,we propose a pre-processing algorithm for the mega-constellation based on highly Dynamic Spatio-Temporal Grids(DSTG).In the first stage,this paper describes the management model of mega-constellation and the multiple tasks.Then,the coding method of DSTG is proposed,based on which the description of complex mega-constellation observation resources is realized.In the third part,the DSTG algorithm is used to realize the processing of concurrent multiple tasks at multiple levels,such as task space attribute,time attribute and grid task importance evaluation.Finally,the simulation result of the proposed method in the case of constellation has been given to verify the effectiveness of concurrent multi-task pre-processing based on DSTG.The autonomous processing process of task decomposition and task fusion and mapping to grids,and the convenient indexing process of time window are verified.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the e...Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Efficient denoising is often a necessary and the first step to be taken before the image data is analyzed to compensate for data corruption and for effective utilization for these data. Hence preprocessing of microarray image is an essential to eliminate the background noise in order to enhance the image quality and effective quantification. Existing denoising techniques based on transformed domain have been utilized for microarray noise reduction with their own limitations. The objective of this paper is to introduce novel preprocessing techniques such as optimized spatial resolution (OSR) and spatial domain filtering (SDF) for reduction of noise from microarray data and reduction of error during quantification process for estimating the microarray spots accurately to determine expression level of genes. Besides combined optimized spatial resolution and spatial filtering is proposed and found improved denoising of microarray data with effective quantification of spots. The proposed method has been validated in microarray images of gene expression profiles of Myeloid Leukemia using Stanford Microarray Database with various quality measures such as signal to noise ratio, peak signal to noise ratio, image fidelity, structural content, absolute average difference and correlation quality. It was observed by quantitative analysis that the proposed technique is more efficient for denoising the microarray image which enables to make it suitable for effective quantification.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1...The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.展开更多
Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching eng...Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching engines. However, state-of-theart matching methods often require a significant amount of pre-processing time and hence are not suitable for this fast updating scenario. In this paper, a novel matching engine called BFA is proposed to achieve high-speed regular expression matching with fast pre-processing. Experiments demonstrate that BFA obtains 5 to 20 times more update abilities compared to existing regular expression matching methods, and scales well on multi-core platforms.展开更多
In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. Ho...In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.展开更多
High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice co...High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming, produces qualitative data, leads to ice mass loss, and leads to risks of potential secondary pollution. However, over the past several decades, preprocessing of ice cores has received less attention than the improvement of ice drilling, the analytical methodology of various indices, and the researches on the climatic and environmental significance of ice core records. Therefore, this papers reviews the development of the processing for ice cores including framework, design as well as materials, analyzes the technical advantages and disadvantages of the different systems. In the past, continuous flowanalysis(CFA) has been successfully applied to process the polar ice cores. However, it is not suitable for ice cores outside polar region because of high level of particles, the memory effect between samples, and the filtration before injection. Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores, which aggravates uncertainty in the measurements. The future developments of CFA are discussed in preprocessing, memory effect, challenge for brittle ice, coupling with real-time analysis and optimization of CFA in the field. Furthermore, non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core. This system also needs to be coupled with streamlined operation of packaging, coding, and stacking that can be implemented at high resolution and rate, avoiding manual intervention. At the same time, information of the longitudinal sections could be scanned andidentified, and then classified to obtain quantitative data. In addition, irregular ice volume and weight can also be obtained accurately. These improvements are recorded automatically via user-friendly interfaces. These innovations may be applied to other paleomedias with similar features and needs.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morp...Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morphology is to use construction ele- ment measure image morphology for solving understand problem.The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter.It gave the theo- ries of MMCNN dynamic extent and stable state.It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analys...There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or ve...The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or very large complicated structures, we must use the parallel algorithm with the aid of high-performance computers to solve complex problems. This paper introduces the implementation process having the parallel with sparse linear equations from the perspective of sparse linear equation group.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic re...Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.展开更多
基金National Natural Science Foundation of China(No.61903291)Industrialization Project of Shaanxi Provincial Department of Education(No.18JC018)。
文摘A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanical systems.Firstly,the singular points of original signals are eliminated effectively by using the first-order difference method.Then the OVMD method is applied for signal modal decomposition.Furthermore,correlation analysis is conducted to determine the degree of correlation between each mode and the original signal,so as to accurately separate the real operating signal from noise signal.On the basis of theoretical analysis and simulation,an edge node pre-processing system for distributed electromechanical system is designed.Finally,by virtue of the signal-to-noise ratio(SNR)and root-mean-square error(RMSE)indicators,the signal pre-processing effect is evaluated.The experimental results show that the OVMD-based edge node pre-processing system can extract signals with different characteristics and improve the SNR of reconstructed signals.Due to its high fidelity and reliability,this system can also provide data quality assurance for subsequent system health monitoring and fault diagnosis.
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
基金supported by the National Natural Science Foundation of China(Nos.62003115 and 11972130)the Shenzhen Science and Technology Program,China(JCYJ20220818102207015)the Heilongjiang Touyan Team Program,China。
文摘The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.However,the complexity of resource allocation is increased because of the large number of tasks and satellites.Therefore,the primary problem of implementing concurrent multiple tasks via LEO mega-constellation is to pre-process tasks and observation re-sources.To address the challenge,we propose a pre-processing algorithm for the mega-constellation based on highly Dynamic Spatio-Temporal Grids(DSTG).In the first stage,this paper describes the management model of mega-constellation and the multiple tasks.Then,the coding method of DSTG is proposed,based on which the description of complex mega-constellation observation resources is realized.In the third part,the DSTG algorithm is used to realize the processing of concurrent multiple tasks at multiple levels,such as task space attribute,time attribute and grid task importance evaluation.Finally,the simulation result of the proposed method in the case of constellation has been given to verify the effectiveness of concurrent multi-task pre-processing based on DSTG.The autonomous processing process of task decomposition and task fusion and mapping to grids,and the convenient indexing process of time window are verified.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
文摘Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Efficient denoising is often a necessary and the first step to be taken before the image data is analyzed to compensate for data corruption and for effective utilization for these data. Hence preprocessing of microarray image is an essential to eliminate the background noise in order to enhance the image quality and effective quantification. Existing denoising techniques based on transformed domain have been utilized for microarray noise reduction with their own limitations. The objective of this paper is to introduce novel preprocessing techniques such as optimized spatial resolution (OSR) and spatial domain filtering (SDF) for reduction of noise from microarray data and reduction of error during quantification process for estimating the microarray spots accurately to determine expression level of genes. Besides combined optimized spatial resolution and spatial filtering is proposed and found improved denoising of microarray data with effective quantification of spots. The proposed method has been validated in microarray images of gene expression profiles of Myeloid Leukemia using Stanford Microarray Database with various quality measures such as signal to noise ratio, peak signal to noise ratio, image fidelity, structural content, absolute average difference and correlation quality. It was observed by quantitative analysis that the proposed technique is more efficient for denoising the microarray image which enables to make it suitable for effective quantification.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
文摘The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.
基金supported by the National Key Technology R&D Program of China under Grant No. 2015BAK34B00the National Key Research and Development Program of China under Grant No. 2016YFB1000102
文摘Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching engines. However, state-of-theart matching methods often require a significant amount of pre-processing time and hence are not suitable for this fast updating scenario. In this paper, a novel matching engine called BFA is proposed to achieve high-speed regular expression matching with fast pre-processing. Experiments demonstrate that BFA obtains 5 to 20 times more update abilities compared to existing regular expression matching methods, and scales well on multi-core platforms.
基金supported by the National Natural Science Foundation of China(60902045)the National High-Tech Research and Developmeent Program of China(863 Program)(2011AA01A105)
文摘In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.
基金supported by the National Natural Science Foundation of China(Grant No.41630754)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2017)CAS Key Technology Talent Program and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(2017490711)
文摘High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming, produces qualitative data, leads to ice mass loss, and leads to risks of potential secondary pollution. However, over the past several decades, preprocessing of ice cores has received less attention than the improvement of ice drilling, the analytical methodology of various indices, and the researches on the climatic and environmental significance of ice core records. Therefore, this papers reviews the development of the processing for ice cores including framework, design as well as materials, analyzes the technical advantages and disadvantages of the different systems. In the past, continuous flowanalysis(CFA) has been successfully applied to process the polar ice cores. However, it is not suitable for ice cores outside polar region because of high level of particles, the memory effect between samples, and the filtration before injection. Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores, which aggravates uncertainty in the measurements. The future developments of CFA are discussed in preprocessing, memory effect, challenge for brittle ice, coupling with real-time analysis and optimization of CFA in the field. Furthermore, non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core. This system also needs to be coupled with streamlined operation of packaging, coding, and stacking that can be implemented at high resolution and rate, avoiding manual intervention. At the same time, information of the longitudinal sections could be scanned andidentified, and then classified to obtain quantitative data. In addition, irregular ice volume and weight can also be obtained accurately. These improvements are recorded automatically via user-friendly interfaces. These innovations may be applied to other paleomedias with similar features and needs.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
文摘Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morphology is to use construction ele- ment measure image morphology for solving understand problem.The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter.It gave the theo- ries of MMCNN dynamic extent and stable state.It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金Key Science and Technology Project of the Shanghai Committee of Science and Technology, China (No.06dz1200921)Major Basic Research Project of the Shanghai Committee of Science and Technology(No.08JC1400100)+1 种基金Shanghai Talent Developing Foundation, China(No.001)Specialized Foundation for Excellent Talent of Shanghai,China
文摘There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
文摘The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or very large complicated structures, we must use the parallel algorithm with the aid of high-performance computers to solve complex problems. This paper introduces the implementation process having the parallel with sparse linear equations from the perspective of sparse linear equation group.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金supported by funds from the National Natural Science Foundation of China (Grant No. T2341008)。
文摘Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.