Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex str...Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex structure or reflection features, the existing multi-channel inversion methods have to adopt the highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features has been proposed to address this issue. The key to our method is to re-characterize the reflection features to directly constrain the pre-stack inversion through a Hadamard product operator without rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum reflection interface, and we obtained them from the post-stack profile by searching the shortest local Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflection features constraint operator advocated by the conventional methods, through decomposing the reflection features along the vertical and horizontal direction at a particular sampling point, we have constructed a computationally well-behaved constraint operator represented by the vertical and horizontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimization, we have derived a fast algorithm for solving the objective function, including Hadamard product operators. Compared with the conventional reflection features constrained inversion, the proposed method is more efficient and accurate, proved on the Overthrust model and a field data set.展开更多
Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only deter...Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only determined by TOC but also depend on the other physical properties of source rocks. Besides, the TOC prediction with the elastic parameters inversion is an indirect method based on the statistical relationship obtained from well logs and experiment data. Therefore, we propose a rock physics model and define a TOC indicator mainly affected by TOC to predict TOC directly. The proposed rock physics model makes the equivalent elastic moduli of source rocks parameterized by the TOC indicator. Combining the equivalent elastic moduli of source rocks and Gray’s approximation leads to a novel linearized approximation of the P-wave reflection coefficient incorporating the TOC indicator. Model examples illustrate that the novel reflectivity approximation well agrees with the exact Zoeppritz equation until incident angles reach 40°. Convoluting the novel P-wave reflection approximation with seismic wavelets as the forward solver, an AVO inversion method based on the Bayesian theory is proposed to invert the TOC indicator with seismic data. The synthetic examples and field tests validate the feasibility and stability of the proposed AVO inversion approach. Using the inversion results of the TOC indicator, TOC is directly and accurately estimated in the target area.展开更多
The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth...The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain.展开更多
Pre-stack waveform inversion, by inverting seismic information, can estimate subsurface elastic properties for reservoir characterization, thus effectively guiding exploration. In recent years, nonlinear inversion met...Pre-stack waveform inversion, by inverting seismic information, can estimate subsurface elastic properties for reservoir characterization, thus effectively guiding exploration. In recent years, nonlinear inversion methods, such as standard genetic algorithm, have been extensively adopted in seismic inversion due to its simplicity, versatility, and robustness. However, standard genetic algorithms have some shortcomings, such as slow convergence rate and easiness to fall into local optimum. In order to overcome these problems, the authors present a new adaptive genetic algorithm for seismic inversion, in which the selection adopts regional equilibrium and elite retention strategies are adopted, and adaptive operators are used in the crossover and mutation to implement local search. After applying this method to pre-stack seismic data, it is found that higher quality inversion results can be achieved within reasonable running time.展开更多
Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density fu...Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density function (PDF) of subsurface models. The Markov chain Monte Carlo (MCMC) method is used to sample the posterior PDF and the subsurface model characteristics can be inferred by analyzing a set of the posterior PDF samples. In this paper, we first introduce the stochastic seismic inversion theory, discuss and analyze the four key parameters: seismic data signal-to-noise ratio (S/N), variogram, the posterior PDF sample number, and well density, and propose the optimum selection of these parameters. The analysis results show that seismic data S/N adjusts the compromise between the influence of the seismic data and geostatistics on the inversion results, the variogram controls the smoothness of the inversion results, the posterior PDF sample number determines the reliability of the statistical characteristics derived from the samples, and well density influences the inversion uncertainty. Finally, the comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more reliable information of the subsurface character.展开更多
Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results ...Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.展开更多
On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inver...On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted reflectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model; (3) although the synthetic data matches well with the original data and the Cauchy norm (or modified Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm, Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modified Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory.展开更多
Although the ambiguity of seismic inversion is widely recognized in both theory and practice, so far as a concrete inversion example is concerned, there is not any objective, controllable method or any standard for ho...Although the ambiguity of seismic inversion is widely recognized in both theory and practice, so far as a concrete inversion example is concerned, there is not any objective, controllable method or any standard for how to evaluate and determine its ambiguity and reliability, especially for the high frequency components beyond the effective seismic frequency band. Taking log-constrained impedance inversion as an example, a new appraisal method is proposed on the basis of analyzing a simple geological model. Firstly, the inverted impedance model is transformed to a reflection coefficient series. Secondly, the maximum effective frequency of the real seismic data is chosen as a cutoff point and the reflection coefficient series is decomposed into two components by low-pass and high-pass filters. Thirdly, the geometrical reflection characteristics of the high-frequency components and that of the real seismic data are compared and analyzed. Then, the reliability of the inverted impedance model is appraised according to the similarity of geometrical characteristics between the high-frequency components and the real seismic data. The new method avoids some subjectivity in appraising the inverted result, and helps to enhance the reliability of reservoir prediction by impedance inversion technology.展开更多
The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the o...The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.展开更多
Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of ...Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of known logging to make up for the lack of limited bandwidth of practical seismic recording, obtaining an approximate reflection coefficient sequence (or wave impedance) of high resolution by iterative inversion and providing more reliable seismic evidence for further lithologic interpretation and lateral tracking, correlation and prediction of thin reservoir. The comprehensive inversion can be realized in the following steps: (1) to establish an initial model of higher resolution; (2) to obtain wavelets, and (3) to constrain iterative inversion. The key to this inversion lies in building an initial model. It is assumed from our experience that when the initial model is properly given, iterative inversion can be quickly converged to the ideal result.展开更多
Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep l...Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep learning-based methods.In order to tackle this problem,we propose a novel seismic impedance inversion method based on a cycle-consistent generative adversarial network(Cycle-GAN).The proposed Cycle-GAN model includes two generative subnets and two discriminative subnets.Three kinds of loss,including cycle-consistent loss,adversarial loss,and estimation loss,are adopted to guide the training process.Benefit from the proposed structure,the information contained in unlabeled data can be extracted,and adversarial learning further guarantees that the prediction results share similar distributions with the real data.Moreover,a neural network visualization method is adopted to show that the proposed CNN model can learn more distinguishable features than the conventional CNN model.The robustness experiments on synthetic data sets show that the proposed method can achieve better performances than other methods in most cases.And the blind-well experiments on real seismic profiles show that the predicted impedance curve of the proposed method maintains a better correlation with the true impedance curve.展开更多
Seismic amplitude variation with offset(AVO) inversion is an important approach for quantitative prediction of rock elasticity,lithology and fluid properties.With Biot-Gassmann's poroelasticity,an improved statist...Seismic amplitude variation with offset(AVO) inversion is an important approach for quantitative prediction of rock elasticity,lithology and fluid properties.With Biot-Gassmann's poroelasticity,an improved statistical AVO inversion approach is proposed.To distinguish the influence of rock porosity and pore fluid modulus on AVO reflection coefficients,the AVO equation of reflection coefficients parameterized by porosity,rock-matrix moduli,density and fluid modulus is initially derived from Gassmann equation and critical porosity model.From the analysis of the influences of model parameters on the proposed AVO equation,rock porosity has the greatest influences,followed by rock-matrix moduli and density,and fluid modulus has the least influences among these model parameters.Furthermore,a statistical AVO stepwise inversion method is implemented to the simultaneous estimation of rock porosity,rock-matrix modulus,density and fluid modulus.Besides,the Laplace probability model and differential evolution,Markov chain Monte Carlo algorithm is utilized for the stochastic simulation within Bayesian framework.Models and field data examples demonstrate that the simultaneous optimizations of multiple Markov chains can achieve the efficient simulation of the posterior probability density distribution of model parameters,which is helpful for the uncertainty analysis of the inversion and sets a theoretical fundament for reservoir characterization and fluid discrimination.展开更多
Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in th...Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted.The implementation process included calculating the well log parameters,stratum contrasting the seismic data and the well logs,and extracting,studying and predicting seismic attributes.Seismic inversion parameters,including the layer velocity and wave impedance,were calculated and effectively used for prediction and analysis.Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure.This enhanced the stability of the inversion method.Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the water-bearing/resisting layer in the Quaternary system.Interpretation of the 1~2 m thin coal seams,and also of the water-bearing/resisting layer in the Quaternary system,is provided.The upper mining limit can be lifted from 60 m to 45 m.The predictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit,which is one of the principles of green mining.展开更多
Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid cha...Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.展开更多
Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-refl...Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduetion of the Indian plate.展开更多
To improve the accuracy of inversion results,geological facies distributions are considered as additional constraints in the inversion process.However,the geological facies itself also has its own uncertainty.In this ...To improve the accuracy of inversion results,geological facies distributions are considered as additional constraints in the inversion process.However,the geological facies itself also has its own uncertainty.In this paper,the initial sedimentary facies maps are obtained by integrated geological analysis from well data,seismic attributes,and deterministic inversion results.Then the fi rst iteration of facies-constrained seismic inversion is performed.According to that result and other data such as geological information,the facies distribution can be updated using cluster analysis.The next round of facies-constrained inversion can then be performed.This process will be repeated until the facies inconsistency or error before and after the inversion is minimized.It forms a new iterative facies-constrained seismic inversion technique.Compared with conventional facies-constrained seismic inversion,the proposed method not only can reduces the non-uniqueness of seismic inversion results but also can improves its resolution.As a consequence,the sedimentary facies will be more consistent with the geology.A practical application demonstrated that the superposition relationship of sand bodies could be better delineated based on this new seismic inversion technique.The result highly increases the understanding of reservoir connectivity and its accuracy,which can be used to guide further development.展开更多
Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere s...Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere sent as 'Bulletins of Source Mechanism Parameters of Earthquakes' to the Seismic Regime Guards' Office,China Seismological Bureau, and the relevant provincial seismological bureaus. These bulletins have played rolein the fast response to large earthquakes.展开更多
We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in ...We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in the specimens introduce a complex stress field,resulting in a spatial and temporal variation of focal mechanisms.Specifically,we consider two experimental setups:(1)where the rock is loaded in compression to generate primarily shear-type fractures and(2)where the material is loaded in indirect tension to generate predominantly tensile-type fractures.In each test,we first decompose AE moment tensors into double-couple(DC)and non-DC terms and then derive unambiguous normal and slip vectors using k-means clustering and an unstructured damped stress inversion algorithm.We explore temporal and spatial distributions of DC and non-DC events at different loading levels.The majority of the DC and the tensile non-DC events cluster around the pre-cut flaws,where macro-cracks later develop.Results of stress inversion are verified against the stress field from finite element(FE)modeling.A good agreement is found between the experimentally derived and numerically simulated stress orientations.To the best of the authors’knowledge,this work presents the first case where stress inversion methodologies are validated by numerical simulations at laboratory scale and under highly heterogeneous stress distributions.展开更多
Deep learning is widely used for seismic impedance inversion,but few work provides in-depth research and analysis on designing the architectures of deep neural networks and choosing the network hyperparameters.This pa...Deep learning is widely used for seismic impedance inversion,but few work provides in-depth research and analysis on designing the architectures of deep neural networks and choosing the network hyperparameters.This paper is dedicated to comprehensively studying on the significant aspects of deep neural networks that affect the inversion results.We experimentally reveal how network hyperparameters and architectures affect the inversion performance,and develop a series of methods which are proven to be effective in reconstructing high-frequency information in the estimated impedance model.Experiments demonstrate that the proposed multi-scale architecture is helpful to reconstruct more high-frequency details than a conventional network.Besides,the reconstruction of high-frequency information can be further promoted by introducing a perceptual loss and a generative adversarial network from the computer vision perspective.More importantly,the experimental results provide valuable references for designing proper network architectures in the seismic inversion problem.展开更多
On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dim...On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter,by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s.The results showed that the velocity model varied significantly beneath different geological units.The Yujiasi syncline is characterized by low velocity at depths of~3.0–4.0 km,corresponding to the stable sedimentary layer in the Sichuan Basin.The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction,with a few local low-velocity zones.The Luxian MS6.0 earthquake epicenter is located at the boundary between the high-and low-velocity zones,and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km.Integrated with the velocity variations around the epicenter,distribution of aftershock sequences,and focal mechanism solution,it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing.展开更多
基金We would like to acknowledge the sponsorship of the National Natural Science Foundation of China(42004092,42030103,41974119)Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM020001-6)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001).
文摘Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex structure or reflection features, the existing multi-channel inversion methods have to adopt the highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features has been proposed to address this issue. The key to our method is to re-characterize the reflection features to directly constrain the pre-stack inversion through a Hadamard product operator without rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum reflection interface, and we obtained them from the post-stack profile by searching the shortest local Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflection features constraint operator advocated by the conventional methods, through decomposing the reflection features along the vertical and horizontal direction at a particular sampling point, we have constructed a computationally well-behaved constraint operator represented by the vertical and horizontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimization, we have derived a fast algorithm for solving the objective function, including Hadamard product operators. Compared with the conventional reflection features constrained inversion, the proposed method is more efficient and accurate, proved on the Overthrust model and a field data set.
基金The authors acknowledge the sponsorship of National Natural Science Foundation of China(42174139,41974119,42030103)Laoshan Laboratory Science and Technology Innovation Program(LSKj202203406)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136).
文摘Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only determined by TOC but also depend on the other physical properties of source rocks. Besides, the TOC prediction with the elastic parameters inversion is an indirect method based on the statistical relationship obtained from well logs and experiment data. Therefore, we propose a rock physics model and define a TOC indicator mainly affected by TOC to predict TOC directly. The proposed rock physics model makes the equivalent elastic moduli of source rocks parameterized by the TOC indicator. Combining the equivalent elastic moduli of source rocks and Gray’s approximation leads to a novel linearized approximation of the P-wave reflection coefficient incorporating the TOC indicator. Model examples illustrate that the novel reflectivity approximation well agrees with the exact Zoeppritz equation until incident angles reach 40°. Convoluting the novel P-wave reflection approximation with seismic wavelets as the forward solver, an AVO inversion method based on the Bayesian theory is proposed to invert the TOC indicator with seismic data. The synthetic examples and field tests validate the feasibility and stability of the proposed AVO inversion approach. Using the inversion results of the TOC indicator, TOC is directly and accurately estimated in the target area.
基金supported by the National Natural Science Foundation of China(No.41574130,41874143 and 41374134)the National Science and Technology Major Project of China(No.2016ZX05014-001-009)the Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2016TD0023)
文摘The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain.
基金Supported by the Major Projects of the National Science and Technology of China(No.2016ZX05026-002-003)National Natural Science Foundation of China(No.41374108)
文摘Pre-stack waveform inversion, by inverting seismic information, can estimate subsurface elastic properties for reservoir characterization, thus effectively guiding exploration. In recent years, nonlinear inversion methods, such as standard genetic algorithm, have been extensively adopted in seismic inversion due to its simplicity, versatility, and robustness. However, standard genetic algorithms have some shortcomings, such as slow convergence rate and easiness to fall into local optimum. In order to overcome these problems, the authors present a new adaptive genetic algorithm for seismic inversion, in which the selection adopts regional equilibrium and elite retention strategies are adopted, and adaptive operators are used in the crossover and mutation to implement local search. After applying this method to pre-stack seismic data, it is found that higher quality inversion results can be achieved within reasonable running time.
基金supported by the National Major Science and Technology Project of China on Development of Big Oil-Gas Fields and Coalbed Methane (No. 2008ZX05010-002)
文摘Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density function (PDF) of subsurface models. The Markov chain Monte Carlo (MCMC) method is used to sample the posterior PDF and the subsurface model characteristics can be inferred by analyzing a set of the posterior PDF samples. In this paper, we first introduce the stochastic seismic inversion theory, discuss and analyze the four key parameters: seismic data signal-to-noise ratio (S/N), variogram, the posterior PDF sample number, and well density, and propose the optimum selection of these parameters. The analysis results show that seismic data S/N adjusts the compromise between the influence of the seismic data and geostatistics on the inversion results, the variogram controls the smoothness of the inversion results, the posterior PDF sample number determines the reliability of the statistical characteristics derived from the samples, and well density influences the inversion uncertainty. Finally, the comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more reliable information of the subsurface character.
基金supported by NSFC(41930425)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ008)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications(2022DQ0604-01)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)and NSFC(42274142).
文摘Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.
基金supported by National Key Basic Research Development Program (Grant No. 2007CB209600)National Major Science and Technology Program (Grant No. 2008ZX05010-002)
文摘On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted reflectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model; (3) although the synthetic data matches well with the original data and the Cauchy norm (or modified Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm, Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modified Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory.
基金supported by the Major Basic Research Development Program of China’s 973 Project(grant No.2007CB209608)the Science and Technology Innovation Foundation of CNPC(grant No.2010D-5006-0301)
文摘Although the ambiguity of seismic inversion is widely recognized in both theory and practice, so far as a concrete inversion example is concerned, there is not any objective, controllable method or any standard for how to evaluate and determine its ambiguity and reliability, especially for the high frequency components beyond the effective seismic frequency band. Taking log-constrained impedance inversion as an example, a new appraisal method is proposed on the basis of analyzing a simple geological model. Firstly, the inverted impedance model is transformed to a reflection coefficient series. Secondly, the maximum effective frequency of the real seismic data is chosen as a cutoff point and the reflection coefficient series is decomposed into two components by low-pass and high-pass filters. Thirdly, the geometrical reflection characteristics of the high-frequency components and that of the real seismic data are compared and analyzed. Then, the reliability of the inverted impedance model is appraised according to the similarity of geometrical characteristics between the high-frequency components and the real seismic data. The new method avoids some subjectivity in appraising the inverted result, and helps to enhance the reliability of reservoir prediction by impedance inversion technology.
基金supported by National Basic Research Program(2006CB202304)of Chinaco-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project of China(Grant No.2011ZX05004003)
文摘The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.
文摘Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of known logging to make up for the lack of limited bandwidth of practical seismic recording, obtaining an approximate reflection coefficient sequence (or wave impedance) of high resolution by iterative inversion and providing more reliable seismic evidence for further lithologic interpretation and lateral tracking, correlation and prediction of thin reservoir. The comprehensive inversion can be realized in the following steps: (1) to establish an initial model of higher resolution; (2) to obtain wavelets, and (3) to constrain iterative inversion. The key to this inversion lies in building an initial model. It is assumed from our experience that when the initial model is properly given, iterative inversion can be quickly converged to the ideal result.
基金financially supported by the NSFC(Grant No.41974126 and 41674116)the National Key Research and Development Program of China(Grant No.2018YFA0702501)the 13th 5-Year Basic Research Program of China National Petroleum Corporation(CNPC)(2018A-3306)。
文摘Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep learning-based methods.In order to tackle this problem,we propose a novel seismic impedance inversion method based on a cycle-consistent generative adversarial network(Cycle-GAN).The proposed Cycle-GAN model includes two generative subnets and two discriminative subnets.Three kinds of loss,including cycle-consistent loss,adversarial loss,and estimation loss,are adopted to guide the training process.Benefit from the proposed structure,the information contained in unlabeled data can be extracted,and adversarial learning further guarantees that the prediction results share similar distributions with the real data.Moreover,a neural network visualization method is adopted to show that the proposed CNN model can learn more distinguishable features than the conventional CNN model.The robustness experiments on synthetic data sets show that the proposed method can achieve better performances than other methods in most cases.And the blind-well experiments on real seismic profiles show that the predicted impedance curve of the proposed method maintains a better correlation with the true impedance curve.
基金the sponsorship of National Grand Project for Science and Technology(2016ZX05024004,2017ZX05009001,2017ZX05032003)the Fundamental Research Funds for the Central Universities(20CX06036A)+1 种基金the Postdoctoral Applied Research Project of Qingdao(QDYY20190040)the Science Foundation from SINOPEC Key Laboratory of Geophysics(wtyjy-wx2019-01-04)。
文摘Seismic amplitude variation with offset(AVO) inversion is an important approach for quantitative prediction of rock elasticity,lithology and fluid properties.With Biot-Gassmann's poroelasticity,an improved statistical AVO inversion approach is proposed.To distinguish the influence of rock porosity and pore fluid modulus on AVO reflection coefficients,the AVO equation of reflection coefficients parameterized by porosity,rock-matrix moduli,density and fluid modulus is initially derived from Gassmann equation and critical porosity model.From the analysis of the influences of model parameters on the proposed AVO equation,rock porosity has the greatest influences,followed by rock-matrix moduli and density,and fluid modulus has the least influences among these model parameters.Furthermore,a statistical AVO stepwise inversion method is implemented to the simultaneous estimation of rock porosity,rock-matrix modulus,density and fluid modulus.Besides,the Laplace probability model and differential evolution,Markov chain Monte Carlo algorithm is utilized for the stochastic simulation within Bayesian framework.Models and field data examples demonstrate that the simultaneous optimizations of multiple Markov chains can achieve the efficient simulation of the posterior probability density distribution of model parameters,which is helpful for the uncertainty analysis of the inversion and sets a theoretical fundament for reservoir characterization and fluid discrimination.
基金Projects 40574057 and 40874054 supported by the National Natural Science Foundation of ChinaProjects 2007CB209400 by the National Basic Research Program of ChinaFoundation of China University of Mining and Technology (OF4471)
文摘Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted.The implementation process included calculating the well log parameters,stratum contrasting the seismic data and the well logs,and extracting,studying and predicting seismic attributes.Seismic inversion parameters,including the layer velocity and wave impedance,were calculated and effectively used for prediction and analysis.Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure.This enhanced the stability of the inversion method.Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the water-bearing/resisting layer in the Quaternary system.Interpretation of the 1~2 m thin coal seams,and also of the water-bearing/resisting layer in the Quaternary system,is provided.The upper mining limit can be lifted from 60 m to 45 m.The predictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit,which is one of the principles of green mining.
基金supported by the National Science and Technology Major Project(No.2016ZX05047-002-001)
文摘Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.
基金supported by the Key Foundation of Institute of Seismology,China Earthquake Administration( IS200916004)
文摘Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduetion of the Indian plate.
基金This research is supported by the Joint Funds of the National Natural Science Foundation of China(No.U20B2016)the National Natural Science Foundation of China(No.41874167)the National Natural Science Foundation of China(No.41904130).
文摘To improve the accuracy of inversion results,geological facies distributions are considered as additional constraints in the inversion process.However,the geological facies itself also has its own uncertainty.In this paper,the initial sedimentary facies maps are obtained by integrated geological analysis from well data,seismic attributes,and deterministic inversion results.Then the fi rst iteration of facies-constrained seismic inversion is performed.According to that result and other data such as geological information,the facies distribution can be updated using cluster analysis.The next round of facies-constrained inversion can then be performed.This process will be repeated until the facies inconsistency or error before and after the inversion is minimized.It forms a new iterative facies-constrained seismic inversion technique.Compared with conventional facies-constrained seismic inversion,the proposed method not only can reduces the non-uniqueness of seismic inversion results but also can improves its resolution.As a consequence,the sedimentary facies will be more consistent with the geology.A practical application demonstrated that the superposition relationship of sand bodies could be better delineated based on this new seismic inversion technique.The result highly increases the understanding of reservoir connectivity and its accuracy,which can be used to guide further development.
文摘Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere sent as 'Bulletins of Source Mechanism Parameters of Earthquakes' to the Seismic Regime Guards' Office,China Seismological Bureau, and the relevant provincial seismological bureaus. These bulletins have played rolein the fast response to large earthquakes.
文摘We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in the specimens introduce a complex stress field,resulting in a spatial and temporal variation of focal mechanisms.Specifically,we consider two experimental setups:(1)where the rock is loaded in compression to generate primarily shear-type fractures and(2)where the material is loaded in indirect tension to generate predominantly tensile-type fractures.In each test,we first decompose AE moment tensors into double-couple(DC)and non-DC terms and then derive unambiguous normal and slip vectors using k-means clustering and an unstructured damped stress inversion algorithm.We explore temporal and spatial distributions of DC and non-DC events at different loading levels.The majority of the DC and the tensile non-DC events cluster around the pre-cut flaws,where macro-cracks later develop.Results of stress inversion are verified against the stress field from finite element(FE)modeling.A good agreement is found between the experimentally derived and numerically simulated stress orientations.To the best of the authors’knowledge,this work presents the first case where stress inversion methodologies are validated by numerical simulations at laboratory scale and under highly heterogeneous stress distributions.
基金supported by the National Natural Science Foundation of China under Grant No.42050104
文摘Deep learning is widely used for seismic impedance inversion,but few work provides in-depth research and analysis on designing the architectures of deep neural networks and choosing the network hyperparameters.This paper is dedicated to comprehensively studying on the significant aspects of deep neural networks that affect the inversion results.We experimentally reveal how network hyperparameters and architectures affect the inversion performance,and develop a series of methods which are proven to be effective in reconstructing high-frequency information in the estimated impedance model.Experiments demonstrate that the proposed multi-scale architecture is helpful to reconstruct more high-frequency details than a conventional network.Besides,the reconstruction of high-frequency information can be further promoted by introducing a perceptual loss and a generative adversarial network from the computer vision perspective.More importantly,the experimental results provide valuable references for designing proper network architectures in the seismic inversion problem.
基金This work was supported by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB22B19,DQJB22R29 and DQJB22B26)the National Natural Science Foundation of China(Nos.41974066,U1839209 and 42074053)。
文摘On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter,by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s.The results showed that the velocity model varied significantly beneath different geological units.The Yujiasi syncline is characterized by low velocity at depths of~3.0–4.0 km,corresponding to the stable sedimentary layer in the Sichuan Basin.The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction,with a few local low-velocity zones.The Luxian MS6.0 earthquake epicenter is located at the boundary between the high-and low-velocity zones,and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km.Integrated with the velocity variations around the epicenter,distribution of aftershock sequences,and focal mechanism solution,it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing.