During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques...During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques(including conventional pre-stressed anchoring cable and unconventional anchoring hole)are usually utilized,however,having several obvious defects.Thus,it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes.For this reason,the authors develop the pre-stressed anchoring beam technique,in which tensile capacity of pre-stressed structures are fully utilized.It is analyzed that the new technique is characterized by multi-functions,including engineering investigation,efficient reinforcement,drainage,monitoring and urgent strength supplement,and hoped to be extensively applicable in the reinforcement of high-steep slopes.展开更多
Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppresse...Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.展开更多
An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brit...An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brittle during transportation and tension process. This paper presents a new type of anchor bearing plate combined stamping with welding forming. The structure of the new type anchor bearing plate is introduced. The stress states of the anchor bearing plate and anchorage zone under work are studied. Various specifications of anchor bearing plate are studied by ANSYS finite element analysis software following the AASHTO specification. The analysis results are compared with the results of the same type of OVM round-shaped anchor plate. The study results show that the new pre-stressed anchor plates combined stamping with welding forming are feasible and more sturdy which can meet the engineering demand.展开更多
To investigate the seismic performance of the double-row pre-stressed anchor piles (DRPAPs) on the Yuxi-Mengzi railway, FLAC3D was used to construct a three-dimensional model. Using Koyna earthquake records as input...To investigate the seismic performance of the double-row pre-stressed anchor piles (DRPAPs) on the Yuxi-Mengzi railway, FLAC3D was used to construct a three-dimensional model. Using Koyna earthquake records as input motions, dynamic time-history analyses were carried out. In the analyses, we compared earth pressure on the front and back of the piles and deformation of the piles under different seismic forces with or without anchor cables. With the anchor cable present, the earth pressure on the back of the pile's free section increases, but that on the back of the pile's anchorage section decreases. Also, with anchor cables, the earth pressure on the front of the upper pile decreases, and that on the back of the lower pile decreases.展开更多
Aiming at prestressed anchor cable frame in the presence of reinforcement landslide problem, through the selection of test points, the paper study and tested soil pressure, frame internal force and prestress losses un...Aiming at prestressed anchor cable frame in the presence of reinforcement landslide problem, through the selection of test points, the paper study and tested soil pressure, frame internal force and prestress losses under prestressed anchor cable frame beam, reveal the law of internal force distribution, and provides a theory basis for the rational design of prestressed anchor cable in landslide.展开更多
Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation...Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation of nonlinear acoustic waves in pre-stressed materials would be influenced by higher-order elastic constants.Despite this,there has been a notable absence of research exploring this phenomenon.Consequently,this paper aims to establish a theoretical framework for governing the propagation of nonlinear acoustic waves in pre-stressed materials.It delves into the impact of pre-stress on higher-order material parameters,and specifically examines the propagation of one-dimensional acoustic waves within the contexts of the uniaxial stress and the biaxial stress.This paper establishes a theoretical foundation for exploring the application of nonlinear ultrasonic techniques to measure pre-stress in materials.展开更多
The fiber grouted material can reinforce the tension strength, shear strength as well as the index of fracture ductile, and remarkably improve the endurance of pre-stressed anchor rope under long-time loading. As a re...The fiber grouted material can reinforce the tension strength, shear strength as well as the index of fracture ductile, and remarkably improve the endurance of pre-stressed anchor rope under long-time loading. As a result, it has the better application foreground. Based on the shear log model and Hashin-Shtrikman upper and lower limited theorem, we have studied the mechanism of fiber grouted material applied in pre-stressed anchor rope and material property, and analyzed the effect of resistance strength of bond, resistance distribution of anchor section and the loading-deformation relationship of anchor body.展开更多
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves...Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.展开更多
The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subject...The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subjected to quasi-static cyclic loading.The experimental configuration includes the installation of 15 pre-stressed cables in a slope model made of concrete blocks(theoretically rigid rock mass) on top of a pre-existing sliding surface.The study showed that:(i) The pre-stressed cables exhibited great seismic performance.Rapid displacement of the model blocks was observed after the complete loss of the initial pre-stress load under continued applied cyclic loads and exceedance of the state of equilibrium,which implies the higher the initial pre-stress load,the better the seismic performance of the rock anchor;(ii) The failure of the pre-stressed cables was due to fracture at the connection of the tendons and cable heads under cyclic loading.The sequence of failure had a distinct pattern.Failure was first observed at the upper row of cables,which experienced the most severe damage,including the ejection of cable heads.No evidence of de-bonding was observed during the cyclic loading;(iii) The stress distribution of the bond length for pre-stressed cables was highly non-uniform.High stress concentrations were observed at both the fixed end and the free end of the bond length both before and immediately after the state of equilibrium is exceeded.The results obtained can be used to evaluate the overall performance of pre-stressed rock anchors subject to seismic loading and their potential as rockfall prevention and stabilization measures.展开更多
The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the...The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.展开更多
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d...The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.展开更多
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri...A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat...Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.展开更多
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar...The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.展开更多
BACKGROUND Magnetic anchor technique(MAT)has been applied in laparoscopic cholecystectomy and laparoscopic appendectomy,but has not been reported in laparoscopic partial hepatectomy.AIM To evaluate the feasibility of ...BACKGROUND Magnetic anchor technique(MAT)has been applied in laparoscopic cholecystectomy and laparoscopic appendectomy,but has not been reported in laparoscopic partial hepatectomy.AIM To evaluate the feasibility of the MAT in laparoscopic left lateral segment liver resection.METHODS Retrospective analysis was conducted on the clinical data of eight patients who underwent laparoscopic left lateral segment liver resection assisted by MAT in our department from July 2020 to November 2021.The Y-Z magnetic anchor devices(Y-Z MADs)was independently designed and developed by the author of this paper,which consists of the anchor magnet and magnetic grasping apparatus.Surgical time,intraoperative blood loss,intraoperative accidents,operator experience,postoperative incision pain score,postoperative complications,and other indicators were evaluated and analyzed.RESULTS All eight patients underwent a MAT-assisted laparoscopic left lateral segment liver resection,including three patients undertaking conventional 5-port and five patients having a transumbilical single-port operation.The mean operation time was 138±34.32 min(range 95-185 min)and the mean intraoperative blood loss was 123±88.60 mL(range 20-300 mL).No adverse events occurred during the operation.The Y-Z MADs showed good workability and maneuverability in both tissue and organ exposure.In particular,the operators did not experience either a“chopstick”or“sword-fight”effect in the single-port laparoscopic operation.CONCLUSION The results show that the MAT is safe and feasible for laparoscopic left lateral segment liver resection,especially,exhibits its unique abettance for transumbilical single-port laparoscopic left lateral segment liver resection.展开更多
BACKGROUND With stiff competition from alternative albeit more expensive counterparts,it has become important to establish the applicability of metallic anchors for shoulder instability in the modern era.This can be a...BACKGROUND With stiff competition from alternative albeit more expensive counterparts,it has become important to establish the applicability of metallic anchors for shoulder instability in the modern era.This can be accomplished,in part,by analysing long-term outcomes.AIM To analyse minimum 10-year outcomes from 30 patients following arthroscopic anterior stabilisation using metallic anchors.METHODS Prospectively collected data from arthroscopic Bankart repairs performed using metal anchors during 2007P-2010 were retrospectively analysed in this singlesurgeon study.Comprehensive data collection included historical and clinical findings,dislocation details,operative specifics,and follow-up radiological and clinical findings including shoulder scores.The primary outcomes were patientreported scores(Constant,American Shoulder and Elbow Surgeons[ASES],and Rowe scores)and pain and instability on a visual analogue scale(VAS).RESULTS A 3% recurrence rate of dislocation was noted at the final follow-up.Total constant scores at 10 years postoperatively measured between 76 and 100(mean 89)were significantly better than preoperative scores(mean 62.7).Congruous improvements were also noted in the Rowe and ASES scores and VAS at the 10-year review.CONCLUSION Reliable long-term outcomes with metallic anchors in surgery for shoulder instability can be expected.Our results provide additional evidence of their continued,cost-effective presence in the modern scenario.展开更多
As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,in...As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.展开更多
基金This paper was financially supported by the Project 973 of Chinese National Program of Basic Research (No. 2002CB412701) the National Natural Science Foundation (No. 40502027)the Project of Innovation Program of Chinese Academy of Sciences (No. KZCX2-306).
文摘During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques(including conventional pre-stressed anchoring cable and unconventional anchoring hole)are usually utilized,however,having several obvious defects.Thus,it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes.For this reason,the authors develop the pre-stressed anchoring beam technique,in which tensile capacity of pre-stressed structures are fully utilized.It is analyzed that the new technique is characterized by multi-functions,including engineering investigation,efficient reinforcement,drainage,monitoring and urgent strength supplement,and hoped to be extensively applicable in the reinforcement of high-steep slopes.
基金financially supported by the National Key R&D Program of China(No.2018YFC1508601)the Fundamental Research Funds for the Central University(20822041B4038)
文摘Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.
文摘An anchor bearing plate transfers the anchoring force from anchor plate to the concrete and the pre-stress is formed in the concrete structure. Currently, the main type of anchor bearing plate is cast iron. It is brittle during transportation and tension process. This paper presents a new type of anchor bearing plate combined stamping with welding forming. The structure of the new type anchor bearing plate is introduced. The stress states of the anchor bearing plate and anchorage zone under work are studied. Various specifications of anchor bearing plate are studied by ANSYS finite element analysis software following the AASHTO specification. The analysis results are compared with the results of the same type of OVM round-shaped anchor plate. The study results show that the new pre-stressed anchor plates combined stamping with welding forming are feasible and more sturdy which can meet the engineering demand.
文摘To investigate the seismic performance of the double-row pre-stressed anchor piles (DRPAPs) on the Yuxi-Mengzi railway, FLAC3D was used to construct a three-dimensional model. Using Koyna earthquake records as input motions, dynamic time-history analyses were carried out. In the analyses, we compared earth pressure on the front and back of the piles and deformation of the piles under different seismic forces with or without anchor cables. With the anchor cable present, the earth pressure on the back of the pile's free section increases, but that on the back of the pile's anchorage section decreases. Also, with anchor cables, the earth pressure on the front of the upper pile decreases, and that on the back of the lower pile decreases.
文摘Aiming at prestressed anchor cable frame in the presence of reinforcement landslide problem, through the selection of test points, the paper study and tested soil pressure, frame internal force and prestress losses under prestressed anchor cable frame beam, reveal the law of internal force distribution, and provides a theory basis for the rational design of prestressed anchor cable in landslide.
基金supported by the National Natural Science Foundation of China(No.12134002)。
文摘Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation of nonlinear acoustic waves in pre-stressed materials would be influenced by higher-order elastic constants.Despite this,there has been a notable absence of research exploring this phenomenon.Consequently,this paper aims to establish a theoretical framework for governing the propagation of nonlinear acoustic waves in pre-stressed materials.It delves into the impact of pre-stress on higher-order material parameters,and specifically examines the propagation of one-dimensional acoustic waves within the contexts of the uniaxial stress and the biaxial stress.This paper establishes a theoretical foundation for exploring the application of nonlinear ultrasonic techniques to measure pre-stress in materials.
文摘The fiber grouted material can reinforce the tension strength, shear strength as well as the index of fracture ductile, and remarkably improve the endurance of pre-stressed anchor rope under long-time loading. As a result, it has the better application foreground. Based on the shear log model and Hashin-Shtrikman upper and lower limited theorem, we have studied the mechanism of fiber grouted material applied in pre-stressed anchor rope and material property, and analyzed the effect of resistance strength of bond, resistance distribution of anchor section and the loading-deformation relationship of anchor body.
基金This paper is financially supported by the National Natural Science Foundation of China(Grant Nos.52074263 and 52034007)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_2332).
文摘Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.
基金financially supported by the National Basic Research Program of China (973 Program) (Grant No.2013CB733202)the National Natural Science Foundation of China (Grant No.41102191)+1 种基金the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No.SKLGP2011Z019)the National Natural Science Foundation of China (Grant No.11670589)
文摘The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subjected to quasi-static cyclic loading.The experimental configuration includes the installation of 15 pre-stressed cables in a slope model made of concrete blocks(theoretically rigid rock mass) on top of a pre-existing sliding surface.The study showed that:(i) The pre-stressed cables exhibited great seismic performance.Rapid displacement of the model blocks was observed after the complete loss of the initial pre-stress load under continued applied cyclic loads and exceedance of the state of equilibrium,which implies the higher the initial pre-stress load,the better the seismic performance of the rock anchor;(ii) The failure of the pre-stressed cables was due to fracture at the connection of the tendons and cable heads under cyclic loading.The sequence of failure had a distinct pattern.Failure was first observed at the upper row of cables,which experienced the most severe damage,including the ejection of cable heads.No evidence of de-bonding was observed during the cyclic loading;(iii) The stress distribution of the bond length for pre-stressed cables was highly non-uniform.High stress concentrations were observed at both the fixed end and the free end of the bond length both before and immediately after the state of equilibrium is exceeded.The results obtained can be used to evaluate the overall performance of pre-stressed rock anchors subject to seismic loading and their potential as rockfall prevention and stabilization measures.
基金supported by the National Natural Science Foundation of China(Nos.52174101,52474169,and 42477202)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515011634 and 2023A1515030243)the Department of Science and Technology of Guangdong Province,China(No.2021ZT09G087).
文摘The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.
基金financial support from the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0708)the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
基金Project(41941018)supported by the National Natural Science Foundation of China for the Special Project FundingProject(22-JKCF-08)supported by the Study on in-situ Stress Database and 3D in-situ Stress Inversion Technology of Highway Tunnel in Shanxi Province,China+1 种基金Project(2022-JKKJ-6)supported by the Study on Disaster Mechanism and NPR Anchor Cable Prevention and Control of Coal Mining Caving Subsidence in Operating Tunnel in Mountainous Area,ChinaProject(BBJ2024032)supported by the Fundamental Research Funds for the Central Universities(PhD Top Innovative Talents Fund of CUMTB),China。
文摘A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)+2 种基金the National Natural Science Foundation of China(51478477,51878668)Guizhou Provincial Department of Transportation Foundation(2017-122058)Foundation of Guizhou Provincial Science and Technology Department([2018]2815).
文摘Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.
基金provided by the National Natural Science Foundation of China(52074300)the Program of China Scholarship Council(202206430024)+2 种基金the National Natural Science Foundation of China Youth Science(52104139)Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)Guizhou province science and technology planning project([2020]3007,[2020]3008)。
文摘The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.
基金the Key Research&Development Program of Shaanxi Province of China,No.2024SF-YBXM-447the Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07+1 种基金the Fundamental Research Funds for the Central Universities,No.xzy022023068the Natural Science Basic Research Plan in Shaanxi Province of China,No.2020JZ-37.
文摘BACKGROUND Magnetic anchor technique(MAT)has been applied in laparoscopic cholecystectomy and laparoscopic appendectomy,but has not been reported in laparoscopic partial hepatectomy.AIM To evaluate the feasibility of the MAT in laparoscopic left lateral segment liver resection.METHODS Retrospective analysis was conducted on the clinical data of eight patients who underwent laparoscopic left lateral segment liver resection assisted by MAT in our department from July 2020 to November 2021.The Y-Z magnetic anchor devices(Y-Z MADs)was independently designed and developed by the author of this paper,which consists of the anchor magnet and magnetic grasping apparatus.Surgical time,intraoperative blood loss,intraoperative accidents,operator experience,postoperative incision pain score,postoperative complications,and other indicators were evaluated and analyzed.RESULTS All eight patients underwent a MAT-assisted laparoscopic left lateral segment liver resection,including three patients undertaking conventional 5-port and five patients having a transumbilical single-port operation.The mean operation time was 138±34.32 min(range 95-185 min)and the mean intraoperative blood loss was 123±88.60 mL(range 20-300 mL).No adverse events occurred during the operation.The Y-Z MADs showed good workability and maneuverability in both tissue and organ exposure.In particular,the operators did not experience either a“chopstick”or“sword-fight”effect in the single-port laparoscopic operation.CONCLUSION The results show that the MAT is safe and feasible for laparoscopic left lateral segment liver resection,especially,exhibits its unique abettance for transumbilical single-port laparoscopic left lateral segment liver resection.
文摘BACKGROUND With stiff competition from alternative albeit more expensive counterparts,it has become important to establish the applicability of metallic anchors for shoulder instability in the modern era.This can be accomplished,in part,by analysing long-term outcomes.AIM To analyse minimum 10-year outcomes from 30 patients following arthroscopic anterior stabilisation using metallic anchors.METHODS Prospectively collected data from arthroscopic Bankart repairs performed using metal anchors during 2007P-2010 were retrospectively analysed in this singlesurgeon study.Comprehensive data collection included historical and clinical findings,dislocation details,operative specifics,and follow-up radiological and clinical findings including shoulder scores.The primary outcomes were patientreported scores(Constant,American Shoulder and Elbow Surgeons[ASES],and Rowe scores)and pain and instability on a visual analogue scale(VAS).RESULTS A 3% recurrence rate of dislocation was noted at the final follow-up.Total constant scores at 10 years postoperatively measured between 76 and 100(mean 89)were significantly better than preoperative scores(mean 62.7).Congruous improvements were also noted in the Rowe and ASES scores and VAS at the 10-year review.CONCLUSION Reliable long-term outcomes with metallic anchors in surgery for shoulder instability can be expected.Our results provide additional evidence of their continued,cost-effective presence in the modern scenario.
文摘As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.