Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncert...Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncertainties in various predictions and observations suggest that the attribution of Mercury’s precession is still not well understood. This paper argues that the cause of Mercury’s precession is not gravity, but the inertia of material motion left over from the formation of the solar system. According to this inertia theory, the planetary precession is associated with the ratio of total mass-energy density of the system to the mass-energy of the Sun and its change over time. If other factors are not changed with time, the perihelion precession of planets per orbit is proportional to his distance relative to the Sun. The conclusions of this paper can provide more effective factor considerations for the complete description of various astronomical events and phenomena using general relativity equations.展开更多
The result of mathematical and physical analysis of the daily change in gravity is presented. The subject of consideration was the manifestation of semi-daily factors in diurnal variations of gravity. The assumption i...The result of mathematical and physical analysis of the daily change in gravity is presented. The subject of consideration was the manifestation of semi-daily factors in diurnal variations of gravity. The assumption is investigated, according to which the cause of the half-day factors is the gravitational shielding of the planet Earth. Gravitational shielding is considered as a function of the size and thickness of celestial bodies and growing with distance from their poles. It is concluded that the planet Earth has the property of partial gravitational shielding, and the Moon does not have enough thickness to exhibit a tangible gravitational shielding. The obtained mathematical results correspond to the existing experimental data. It is suggested that gravitational shielding is the cause of the precession of the perihelion of Mercury and the peculiarities of the manifestation of tidal processes. It is assumed that gravitational shielding is one of the main reasons for the presence of hidden substances in the Universe. It is concluded that the physical picture with mutual shielding of interaction elements corresponds to the classical ideas of Fatio and Lesage. This approach is proposed as an alternative point of view to the existing theory on the description of tidal processes. It is shown that the existing basic approach to the description of tidal forces is unsatisfactory: the factors underlying the existing approaches have values 10 times less than those observed and cannot be considered as the reason for the manifestation of half-day manifestations in the daily change in gravity. The work is a continuation of the implementation by the author of P. Dirac’s ideas about accounting for the size of microparticles in physical theory.展开更多
The possibility of gravitational shielding from more massive objects than the Moon-planet Earth and the giant planets of the Solar System is considered. Within the framework of the Lesage concept, the mutual spatial s...The possibility of gravitational shielding from more massive objects than the Moon-planet Earth and the giant planets of the Solar System is considered. Within the framework of the Lesage concept, the mutual spatial shielding of mass-forming elements-atomic nuclei in ordinary matter-was evaluated. It is concluded that the size of the Moon is insufficient for tangible gravitational shielding and partial mutual shielding is about 50% for planet Earth. It is determined that there is a critical thickness of ordinary matter at which complete mutual shielding of atomic nuclei is observed. The estimated critical thickness is about d<sub>c</sub>=1.3 X 10<sup>8</sup>m, which is typical for the sizes of giant planets. It is concluded that due to the presence of gravitational shielding, not the entire mass of massive celestial bodies participates in the act of gravitational interaction, which leads to the conclusion that there is a hidden mass of massive objects and to low values in the calculation of the density of the giant planets of the Solar System. It has been established that the true mass and true density of giant planets exceed their known values by 5 times. The presence of gravitational shielding from the planet Earth leads to a revision of the physical picture of nature and the consequences of tidal forces. The idea of P. Dirac concerning the accounting of the sizes of microparticles-nucleons, expressed for the further development of the physical theory, is realized. The gravitational size of the atomic nucleus is calculated on the order of 10<sup>-</sup><sup>18</sup> m.展开更多
In this paper, we are going to find out a simple way yet extraordinary to the equation of motion of electric charge under the influence of a central force. We’ll find that it is the same as the formula of the common ...In this paper, we are going to find out a simple way yet extraordinary to the equation of motion of electric charge under the influence of a central force. We’ll find that it is the same as the formula of the common equation of motion in the theory of general relativity which controls the motion of planets around the sun;thus, every electron orbiting around the nucleus has a perihelion which revolves same as Mercury perihelion yet faster 2000 times according to Hydrogen atom, assuming that hydrogen has a perihelion. That is to say, when Mercury perihelion takes three million years to complete a full cycle around the sun, we find that Hydrogen perihelion (here we mean the classical model of atom, not quantitative model of it) revolves around the nucleus at 1.05 × 1012 cycle per second. In addition, the radiation passing near the nucleus deviates same as the deflection of light passing near the sun yet with a greater value according to how close the radiation is from the nucleus, as shown in the discussion. We discussed briefly (but differently) the definition of black holes to affirm symmetry principle between the atomic and astronomical models. Symmetry in equations of motion of a body in the atomic and astronomical models indicates that the Advance of Mercury’s Perihelion, deflection of light passing near the sun, and the definition of black holes are the ABCs of classical physics;however, they are not considered as reliable evidences on the soundness of the principle on which the theory of general relativity is built on, in the presence of a contradiction between the definition of gravity in the general relativity and in the electromagnetic theory.展开更多
文摘Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncertainties in various predictions and observations suggest that the attribution of Mercury’s precession is still not well understood. This paper argues that the cause of Mercury’s precession is not gravity, but the inertia of material motion left over from the formation of the solar system. According to this inertia theory, the planetary precession is associated with the ratio of total mass-energy density of the system to the mass-energy of the Sun and its change over time. If other factors are not changed with time, the perihelion precession of planets per orbit is proportional to his distance relative to the Sun. The conclusions of this paper can provide more effective factor considerations for the complete description of various astronomical events and phenomena using general relativity equations.
文摘The result of mathematical and physical analysis of the daily change in gravity is presented. The subject of consideration was the manifestation of semi-daily factors in diurnal variations of gravity. The assumption is investigated, according to which the cause of the half-day factors is the gravitational shielding of the planet Earth. Gravitational shielding is considered as a function of the size and thickness of celestial bodies and growing with distance from their poles. It is concluded that the planet Earth has the property of partial gravitational shielding, and the Moon does not have enough thickness to exhibit a tangible gravitational shielding. The obtained mathematical results correspond to the existing experimental data. It is suggested that gravitational shielding is the cause of the precession of the perihelion of Mercury and the peculiarities of the manifestation of tidal processes. It is assumed that gravitational shielding is one of the main reasons for the presence of hidden substances in the Universe. It is concluded that the physical picture with mutual shielding of interaction elements corresponds to the classical ideas of Fatio and Lesage. This approach is proposed as an alternative point of view to the existing theory on the description of tidal processes. It is shown that the existing basic approach to the description of tidal forces is unsatisfactory: the factors underlying the existing approaches have values 10 times less than those observed and cannot be considered as the reason for the manifestation of half-day manifestations in the daily change in gravity. The work is a continuation of the implementation by the author of P. Dirac’s ideas about accounting for the size of microparticles in physical theory.
文摘The possibility of gravitational shielding from more massive objects than the Moon-planet Earth and the giant planets of the Solar System is considered. Within the framework of the Lesage concept, the mutual spatial shielding of mass-forming elements-atomic nuclei in ordinary matter-was evaluated. It is concluded that the size of the Moon is insufficient for tangible gravitational shielding and partial mutual shielding is about 50% for planet Earth. It is determined that there is a critical thickness of ordinary matter at which complete mutual shielding of atomic nuclei is observed. The estimated critical thickness is about d<sub>c</sub>=1.3 X 10<sup>8</sup>m, which is typical for the sizes of giant planets. It is concluded that due to the presence of gravitational shielding, not the entire mass of massive celestial bodies participates in the act of gravitational interaction, which leads to the conclusion that there is a hidden mass of massive objects and to low values in the calculation of the density of the giant planets of the Solar System. It has been established that the true mass and true density of giant planets exceed their known values by 5 times. The presence of gravitational shielding from the planet Earth leads to a revision of the physical picture of nature and the consequences of tidal forces. The idea of P. Dirac concerning the accounting of the sizes of microparticles-nucleons, expressed for the further development of the physical theory, is realized. The gravitational size of the atomic nucleus is calculated on the order of 10<sup>-</sup><sup>18</sup> m.
文摘In this paper, we are going to find out a simple way yet extraordinary to the equation of motion of electric charge under the influence of a central force. We’ll find that it is the same as the formula of the common equation of motion in the theory of general relativity which controls the motion of planets around the sun;thus, every electron orbiting around the nucleus has a perihelion which revolves same as Mercury perihelion yet faster 2000 times according to Hydrogen atom, assuming that hydrogen has a perihelion. That is to say, when Mercury perihelion takes three million years to complete a full cycle around the sun, we find that Hydrogen perihelion (here we mean the classical model of atom, not quantitative model of it) revolves around the nucleus at 1.05 × 1012 cycle per second. In addition, the radiation passing near the nucleus deviates same as the deflection of light passing near the sun yet with a greater value according to how close the radiation is from the nucleus, as shown in the discussion. We discussed briefly (but differently) the definition of black holes to affirm symmetry principle between the atomic and astronomical models. Symmetry in equations of motion of a body in the atomic and astronomical models indicates that the Advance of Mercury’s Perihelion, deflection of light passing near the sun, and the definition of black holes are the ABCs of classical physics;however, they are not considered as reliable evidences on the soundness of the principle on which the theory of general relativity is built on, in the presence of a contradiction between the definition of gravity in the general relativity and in the electromagnetic theory.