Recently,CoCO3 has attracted enormous attention as anodes for lithium-ion batteries(LIBs),benefiting from its high theoretical capacity and simple synthesis.However,the modest electronic conductivity and structural in...Recently,CoCO3 has attracted enormous attention as anodes for lithium-ion batteries(LIBs),benefiting from its high theoretical capacity and simple synthesis.However,the modest electronic conductivity and structural instability over cycling hinder its wider applications.To well address the intrinsic issues,we explored a precipitantfree hydrothermal methodology for mass production of spindle-like CoCO3/reduced graphene oxide(S-CoCO3/rGO)toward advanced LIBs as a hybrid anode.The dimethylformamide plays a significant role of"two birds(i.e.,solvent and precipitant)with one stone"in the formation of the S-CoCO3/rGO,greatly improving its practical applicability.The purposeful introduction of rGO nanosheets as a two-dimensional flexible conductive network enhances the conductivity and stability of the S-CoCO3.It is the structural and compositional merits for LIBs that endow the S-CoCO3/rGO with remarkable lithium-storage performance in terms of enhanced interfacial storage capacity,high-rate reversible capacities(803 mAh·g-1 at 2.0 A·g-1)and long-duration capacity retention of 82.1%over 2000 consecutive cycles at 2.0 A·g-1.More significantly,the simple yet efficient avenue here promises enormous commercial prospect of the S-CoCO3/rGO in next-generation LIBs.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51772127 and 51772131)the Taishan Scholars(No.ts201712050)+3 种基金the Major Program of Shandong Province Natural Science Foundation(No.ZR2018ZB0317)the Natural Science Doctoral Foundation ofShandong Province(No.ZR2019BEM038)the Natural Science Doctoral Foundation of the University of Jinan(No.XBS1830)the Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong。
文摘Recently,CoCO3 has attracted enormous attention as anodes for lithium-ion batteries(LIBs),benefiting from its high theoretical capacity and simple synthesis.However,the modest electronic conductivity and structural instability over cycling hinder its wider applications.To well address the intrinsic issues,we explored a precipitantfree hydrothermal methodology for mass production of spindle-like CoCO3/reduced graphene oxide(S-CoCO3/rGO)toward advanced LIBs as a hybrid anode.The dimethylformamide plays a significant role of"two birds(i.e.,solvent and precipitant)with one stone"in the formation of the S-CoCO3/rGO,greatly improving its practical applicability.The purposeful introduction of rGO nanosheets as a two-dimensional flexible conductive network enhances the conductivity and stability of the S-CoCO3.It is the structural and compositional merits for LIBs that endow the S-CoCO3/rGO with remarkable lithium-storage performance in terms of enhanced interfacial storage capacity,high-rate reversible capacities(803 mAh·g-1 at 2.0 A·g-1)and long-duration capacity retention of 82.1%over 2000 consecutive cycles at 2.0 A·g-1.More significantly,the simple yet efficient avenue here promises enormous commercial prospect of the S-CoCO3/rGO in next-generation LIBs.