Irrigation not only plays an important role in global food security,but it also affects aspects of the regional climate,including precipitation.In this study,we proposed a simple and convenient method to quantify the ...Irrigation not only plays an important role in global food security,but it also affects aspects of the regional climate,including precipitation.In this study,we proposed a simple and convenient method to quantify the contribution of large-scale irrigation to precipitation by distinguishing the amount of evaporation generated by irrigation from local evaporation based on the precipitation recycling method.A case study was presented to show the increased precipitation recycling ratio and the contribution of irrigation to precipitation during the main irrigation period in the Haihe Plain from 1961 to 2016.We found that the average precipitation recycling rates in the Haihe Plain are 8.32%,9.74%,and 10.36%in April,May,and June,respectively.The contribution rates of irrigation to precipitation in the Haihe Plain are 3.76%,5.12%,and 2.29%in April,May,and June,respectively.The total contribution of irrigation to precipitation during the main irrigation period is 3.77 mm;the respective contributions in April,May,and June are 0.72,1.70,and 1.35 mm.The contribution of irrigation to local precipitation is relatively small as the inflow of atmospheric moisture during the irrigation period is still the main factor affecting local precipitation.Nevertheless,this part of the precipitation during the irrigation period alleviates the water shortage in the Haihe Plain to some extent.展开更多
Precipitation recycling ratio(i.e.,evaporation-precipitation feedback strength)and water vapor sources are two key aspects of regional water cycle,and their quantification is essential for understanding water cycle pr...Precipitation recycling ratio(i.e.,evaporation-precipitation feedback strength)and water vapor sources are two key aspects of regional water cycle,and their quantification is essential for understanding water cycle processes and their changes.The results of existing studies on the precipitation recycling ratio and water vapor sources for the Tibetan Plateau were highly controversial.This article clarifies different frameworks for understanding the water cycle.It points out that(1)the ratio of evaporation to precipitation depends mainly on climate regimes,while the precipitation recycling ratio is closely related to both the climate regimes and the scale of the region of interest,and(2)the water vapor sources depend on the traced period(precipitating or non-precipitating period)and the degree of tracing.Within the same theoretical framework,there is no fundamental conflict among the results of different studies on the water cycle in the Tibetan Plateau.展开更多
1 Introduction The main production of Yabulai salt lake was original salt and recycled salt many years ago.After decade’s production,the sale lake resource is more and more deficient.Glauber’s salt and magnesium sal...1 Introduction The main production of Yabulai salt lake was original salt and recycled salt many years ago.After decade’s production,the sale lake resource is more and more deficient.Glauber’s salt and magnesium salt are concentrated in brine now.It could affect the quality of the salt.In recent years,research had done much work to展开更多
China Meteorological Administration(CMA) recently released its 40-yr(1979–2018) global Chinese reanalysis(CRA-40) dataset. To assess performance of the CRA-40 data in quantifying the regional water cycle, contributio...China Meteorological Administration(CMA) recently released its 40-yr(1979–2018) global Chinese reanalysis(CRA-40) dataset. To assess performance of the CRA-40 data in quantifying the regional water cycle, contributions of local and remote atmospheric moisture fluxes to precipitation in East China derived from CRA-40 are compared with those derived from the ECMWF reanalysis version 5(ERA-5). Observed precipitation and evaporation data are also used for validation. As for mean precipitation, CRA-40 matches the observation better in winter and spring than in summer, with a larger wet bias(1.41 mm day^(-1)) in summer than that in ERA-5(0.97 mm day^(-1)), particularly over South China. The conservation of atmospheric water vapor over East China measured by CRA-40 is comparable to that of ERA-5. Both reanalyses show a dominant role of the remote moisture transport in the East China precipitation.In comparison, the annual precipitation induced by the moisture influx from the west of the study domain in CRA-40 is 80 mm less than that in ERA-5. The recycling ratio of annual mean precipitation in CRA-40 is approximately21.1%, slightly larger than that in ERA-5(20.1%). The maximum difference of each hydrological component between the two datasets appears in the summer horizontal moisture influx(3.57 ×10^(7) kg s^(-1);ERA-5 is larger) and winter runoff(1.84 ×10^(7) kg s^(-1);CRA-40 is larger). CRA-40 shows better performance than ERA-5 in capturing the interannual variability of precipitation over East China, as evinced by a higher correlation coefficient with the observation(0.77 versus 0.33). The trend of summer precipitation since 2011 is better reproduced in CRA-40. Both reanalyses show prominent contribution of the southern moisture influx to the interannual variation of precipitation. This study demonstrates the reliability of CRA-40 in representing the hydrological cycle over East China and provides a useful reference for future application of CRA-40 in water cycle studies.展开更多
This paper utilizes a modified Water Accounting Model (WAM) to track the moisture sources of an extreme precipitation event in Shandong during 18-20 July 2007. It is found that different methods in dealing with the ...This paper utilizes a modified Water Accounting Model (WAM) to track the moisture sources of an extreme precipitation event in Shandong during 18-20 July 2007. It is found that different methods in dealing with the residual of the water budget always produce different results in moisture recycling calculations. In addition, results from the backward tracking without the residual are in complete agreement with those from the forward tracking with the residual, and vice versa, implying a mathematical consistency. We thus analyze and derive the conditions under which the two tracking approaches equate with each other. We applied the backward tracking to the Shandong extreme rainfall case and obtained quantitative estimates of moisture contributions of three selected regions away from the rainfall area. The results indicate that the spatial pattern rather than numerical value of the recycling moisture is more reliable in tracking the moisture sources. The moisture of this Shandong rainfall event comes mostly from the nearby upwind area in Southwest China, which is of the terrestrial origin; while the moisture originating from the neighboring West Pacific contributes little to this event.展开更多
NdFeB magnets currently dominate the magnet market. Supply risks of certain rare earth metals(REM), e.g. Nd and Dy, impose efficient recycling schemes that are applicable to different types and compositions of these...NdFeB magnets currently dominate the magnet market. Supply risks of certain rare earth metals(REM), e.g. Nd and Dy, impose efficient recycling schemes that are applicable to different types and compositions of these magnets with minimum use of chemicals and waste generation. In this study, a hydrometallurgical method was studied that could be adjusted to recover not only REM, but also other valuable metals(e.g.Co, Ni and Cu) that co-existed in the magnet. The magnet powders were completely dissolved in a dilute sulfuric acid solution giving more than 98% of dissolved iron in the ferrous state. Chemical oxidation of Fe-(2+) into Fe-(3+) by the addition of MnO 2 required only 1 h at ambient temperature. It was then possible to precipitate more than 99% of this ferric iron by adjusting the pH of the solution above 3 with either Ca(OH)2 or MnO additions. However, the addition of Ca(OH)2 resulted in the formation of gypsum and up to ca. 23% REM losses, possibly via co-precipitation into the gypsum. MnO elevated the Mn-(2+) concentration in the solution. However, it was found to be problematic that subsequent direct electrolysis removed Mn and Co. Low anodic current efficiencies(ACE) resulted in high energy consumption(EC), while incomplete Mn and Co removals and undesired REM losses were reported. Pre-electrolysis removals of REM and/or Co by oxalate and/or sulfide precipitation were proven to be successful and selective, but this enlarged the flowsheet considerably with only minor improvement of the Mn removal, ACE and EC.展开更多
This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general...This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general circulation by implementing the Simplified Simple Biosphere (SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM). This study reveals that the SSiB model produces a better partitioning of the land surface heat and moisture fluxes and its diurnal variations,and also gives the transport of energy and water among atmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runs lead to the more conspicuous improvement in the simulated circulation,precipitation,mean water vapor content and its transport.particularly in the Asian monsoon region in the real world than CTL-AGCM runs.It is also pointed out that both the implementation of land surface parameterizations and the variations in land surface into the GOALS model have greatly improved hydrological balance over continents and have a significant impact on the simulated climate. particularly over the massive continents. Improved precipitation recycling model was employed to verify the mechanisms for land surface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM. It can be argued that the recycling precipitation rate is significantly reduced,particularly in the arid and semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction in evapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce the bias of too much precipitation over land surface in most AGCMs,thereby bringing the simulated precipitation closer to observations in many continental regions of the world than CTL-AGCM runs.展开更多
基金Supported by the National Key Research and Development Program of China(2021YFC3200200)National Science Fund for Distinguished Young Scholars of China(52025093 and 51625904).
文摘Irrigation not only plays an important role in global food security,but it also affects aspects of the regional climate,including precipitation.In this study,we proposed a simple and convenient method to quantify the contribution of large-scale irrigation to precipitation by distinguishing the amount of evaporation generated by irrigation from local evaporation based on the precipitation recycling method.A case study was presented to show the increased precipitation recycling ratio and the contribution of irrigation to precipitation during the main irrigation period in the Haihe Plain from 1961 to 2016.We found that the average precipitation recycling rates in the Haihe Plain are 8.32%,9.74%,and 10.36%in April,May,and June,respectively.The contribution rates of irrigation to precipitation in the Haihe Plain are 3.76%,5.12%,and 2.29%in April,May,and June,respectively.The total contribution of irrigation to precipitation during the main irrigation period is 3.77 mm;the respective contributions in April,May,and June are 0.72,1.70,and 1.35 mm.The contribution of irrigation to local precipitation is relatively small as the inflow of atmospheric moisture during the irrigation period is still the main factor affecting local precipitation.Nevertheless,this part of the precipitation during the irrigation period alleviates the water shortage in the Haihe Plain to some extent.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA2006010201)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0206)。
文摘Precipitation recycling ratio(i.e.,evaporation-precipitation feedback strength)and water vapor sources are two key aspects of regional water cycle,and their quantification is essential for understanding water cycle processes and their changes.The results of existing studies on the precipitation recycling ratio and water vapor sources for the Tibetan Plateau were highly controversial.This article clarifies different frameworks for understanding the water cycle.It points out that(1)the ratio of evaporation to precipitation depends mainly on climate regimes,while the precipitation recycling ratio is closely related to both the climate regimes and the scale of the region of interest,and(2)the water vapor sources depend on the traced period(precipitating or non-precipitating period)and the degree of tracing.Within the same theoretical framework,there is no fundamental conflict among the results of different studies on the water cycle in the Tibetan Plateau.
基金financial support of National Nature Science Foundation (21376178)TIDA giant growth plan (2011-XJR13020)+3 种基金Tianjin Science and technology support program (12ZCDZSF06900)Tianjin University of Science and Technology fund for scientific research (20120119)Tianjin education commission program (20130509)Research fund for the doctoral program of higher education of China (20131208120001)
文摘1 Introduction The main production of Yabulai salt lake was original salt and recycled salt many years ago.After decade’s production,the sale lake resource is more and more deficient.Glauber’s salt and magnesium salt are concentrated in brine now.It could affect the quality of the salt.In recent years,research had done much work to
基金Supported by the National Natural Science Foundation of China (41675076)Program of International S&T Cooperation of Chinese Academy of Sciences (2018YFE0196000)Innovative Team Project of Lanzhou Institute of Arid Meteorology (GHSCXTD-2020-2)。
文摘China Meteorological Administration(CMA) recently released its 40-yr(1979–2018) global Chinese reanalysis(CRA-40) dataset. To assess performance of the CRA-40 data in quantifying the regional water cycle, contributions of local and remote atmospheric moisture fluxes to precipitation in East China derived from CRA-40 are compared with those derived from the ECMWF reanalysis version 5(ERA-5). Observed precipitation and evaporation data are also used for validation. As for mean precipitation, CRA-40 matches the observation better in winter and spring than in summer, with a larger wet bias(1.41 mm day^(-1)) in summer than that in ERA-5(0.97 mm day^(-1)), particularly over South China. The conservation of atmospheric water vapor over East China measured by CRA-40 is comparable to that of ERA-5. Both reanalyses show a dominant role of the remote moisture transport in the East China precipitation.In comparison, the annual precipitation induced by the moisture influx from the west of the study domain in CRA-40 is 80 mm less than that in ERA-5. The recycling ratio of annual mean precipitation in CRA-40 is approximately21.1%, slightly larger than that in ERA-5(20.1%). The maximum difference of each hydrological component between the two datasets appears in the summer horizontal moisture influx(3.57 ×10^(7) kg s^(-1);ERA-5 is larger) and winter runoff(1.84 ×10^(7) kg s^(-1);CRA-40 is larger). CRA-40 shows better performance than ERA-5 in capturing the interannual variability of precipitation over East China, as evinced by a higher correlation coefficient with the observation(0.77 versus 0.33). The trend of summer precipitation since 2011 is better reproduced in CRA-40. Both reanalyses show prominent contribution of the southern moisture influx to the interannual variation of precipitation. This study demonstrates the reliability of CRA-40 in representing the hydrological cycle over East China and provides a useful reference for future application of CRA-40 in water cycle studies.
基金Supported by the National Science and Technology Support Program of China(2012BAC20B06)
文摘This paper utilizes a modified Water Accounting Model (WAM) to track the moisture sources of an extreme precipitation event in Shandong during 18-20 July 2007. It is found that different methods in dealing with the residual of the water budget always produce different results in moisture recycling calculations. In addition, results from the backward tracking without the residual are in complete agreement with those from the forward tracking with the residual, and vice versa, implying a mathematical consistency. We thus analyze and derive the conditions under which the two tracking approaches equate with each other. We applied the backward tracking to the Shandong extreme rainfall case and obtained quantitative estimates of moisture contributions of three selected regions away from the rainfall area. The results indicate that the spatial pattern rather than numerical value of the recycling moisture is more reliable in tracking the moisture sources. The moisture of this Shandong rainfall event comes mostly from the nearby upwind area in Southwest China, which is of the terrestrial origin; while the moisture originating from the neighboring West Pacific contributes little to this event.
基金Project supported by the European Community’s Seventh Framework Programme([FP7/2007-2013])under grant Agreement No.607411(MC-ITN EREAN:European Rare Earth Magnet Recycling Network)the Hercules Foundation(Project ZW09-09)
文摘NdFeB magnets currently dominate the magnet market. Supply risks of certain rare earth metals(REM), e.g. Nd and Dy, impose efficient recycling schemes that are applicable to different types and compositions of these magnets with minimum use of chemicals and waste generation. In this study, a hydrometallurgical method was studied that could be adjusted to recover not only REM, but also other valuable metals(e.g.Co, Ni and Cu) that co-existed in the magnet. The magnet powders were completely dissolved in a dilute sulfuric acid solution giving more than 98% of dissolved iron in the ferrous state. Chemical oxidation of Fe-(2+) into Fe-(3+) by the addition of MnO 2 required only 1 h at ambient temperature. It was then possible to precipitate more than 99% of this ferric iron by adjusting the pH of the solution above 3 with either Ca(OH)2 or MnO additions. However, the addition of Ca(OH)2 resulted in the formation of gypsum and up to ca. 23% REM losses, possibly via co-precipitation into the gypsum. MnO elevated the Mn-(2+) concentration in the solution. However, it was found to be problematic that subsequent direct electrolysis removed Mn and Co. Low anodic current efficiencies(ACE) resulted in high energy consumption(EC), while incomplete Mn and Co removals and undesired REM losses were reported. Pre-electrolysis removals of REM and/or Co by oxalate and/or sulfide precipitation were proven to be successful and selective, but this enlarged the flowsheet considerably with only minor improvement of the Mn removal, ACE and EC.
基金Project jointly supported by the Key Project of National Basic Research"Research on the Formation Mechanism Prediction Theory of Severe ClimaticSynoptic Disasters in China"through"973"grant No.G1998040911,G1998040900 and by the National Natu
文摘This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general circulation by implementing the Simplified Simple Biosphere (SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM). This study reveals that the SSiB model produces a better partitioning of the land surface heat and moisture fluxes and its diurnal variations,and also gives the transport of energy and water among atmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runs lead to the more conspicuous improvement in the simulated circulation,precipitation,mean water vapor content and its transport.particularly in the Asian monsoon region in the real world than CTL-AGCM runs.It is also pointed out that both the implementation of land surface parameterizations and the variations in land surface into the GOALS model have greatly improved hydrological balance over continents and have a significant impact on the simulated climate. particularly over the massive continents. Improved precipitation recycling model was employed to verify the mechanisms for land surface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM. It can be argued that the recycling precipitation rate is significantly reduced,particularly in the arid and semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction in evapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce the bias of too much precipitation over land surface in most AGCMs,thereby bringing the simulated precipitation closer to observations in many continental regions of the world than CTL-AGCM runs.