期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of Additional Elements on Microstructure and Precipitation Behaviour in Rapidly Solidified Al-Ti Base Alloys 被引量:2
1
作者 Won-Wook Park Chul-Jin Choi and Bong-Sun You (Dept. of Materials Processing, Korea Institute of Machinery and Metals, 66 Sangnam-Dong,Changwon, Kyungnam, Korea 641-010)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第3期195-198,共4页
Rapidly solidified Al-Ti base alloys were prepared by melt spinning at the cooling rate about 107 K/s. The melt-spun ribbons were used to observe the dricrostructures after heat treatment.In the supersaturated Al-Tl-S... Rapidly solidified Al-Ti base alloys were prepared by melt spinning at the cooling rate about 107 K/s. The melt-spun ribbons were used to observe the dricrostructures after heat treatment.In the supersaturated Al-Tl-Si alloy, age hardening occurred after 1 h anneal in the temperature range of 4000~500℃, which seems to be attributed to the precipitation of metastable Ll2- (Al,Si)3Ti phase. However. the microhardness was relatively low because of the low v/o and the insufflcient stability of precipitates. Thus. Cr was added to Al-Ti-Si alloys in order to stabilize the microstructures and to increase the v/o of precipitate5. As a result. the alIoys containing Cr were evaluated to possess the improved properties at the service temperature. 展开更多
关键词 Ti BASE Al Effects of Additional Elements on Microstructure and precipitation behaviour in Rapidly Solidified Al-Ti Base Alloys
下载PDF
Effects of Heat Treatments on Microstructures and Precipitation Behaviour of Mg_(94)Y_4Zn_2 Extruded Alloy 被引量:2
2
作者 Huan Liu Feng Xue +2 位作者 Jing Bai Jian Zhou Yangshan Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第2期128-133,共6页
Microstructures and precipitation behaviours of Mg94Y4Zn2 (at. %) extruded alloy during solution treatment and ageing processes were investigated. Three major phases were observed in the as-cast Ug94Zn2Y4 alloy:α-... Microstructures and precipitation behaviours of Mg94Y4Zn2 (at. %) extruded alloy during solution treatment and ageing processes were investigated. Three major phases were observed in the as-cast Ug94Zn2Y4 alloy:α-Mg, block shaped 1 8R long period stacking ordered (LPSO) phase and Mg24Y5 cuboid particles. After homogenization and extrusion, the block shaped LPSO phase changed into plate-like shape aligned along the direction of extrusion. During solution treatment, a small fraction of LPSO phase was transformed from 18R structure to 14H type. The nano-scale β' phase with its close-packed planes being perpendicular to the direction of both α-Mg and LPSO structure was precipitated at ageing stage. The coexistence of β' and LPSO phase contributes to the strengthening of the alloy, with microhardness for the matrix and LPSO structures reaching 145.8 and 155,0 HV, respectively. 展开更多
关键词 Heat treatment Microstructure precipitation behaviour Mg94Y4Zn2 alloy Long period stacking ordered structure
原文传递
Microstructural Evolution of Nb–V–Mo and V Containing TRIP-assisted Steels during Thermomechanical Processing 被引量:7
3
作者 Erfan Abbasi William Mark Rainforth 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第4期311-320,共10页
The microstructural evolution and precipitation behaviour of Nb–V–Mo and single V containing transformation induced plasticity assisted steels were investigated during thermomechanical processing. A plane strain com... The microstructural evolution and precipitation behaviour of Nb–V–Mo and single V containing transformation induced plasticity assisted steels were investigated during thermomechanical processing. A plane strain compression testing machine was used to simulate the thermomechanical processing. Microstructures were characterised by optical microscopy, scanning-transmission electron microscopy and microanalysis, and X-ray diffraction analysis, and Vickers hardness was obtained from the deformed specimens. The resulting microstructure of both Nb–V–Mo and V steels at room temperature primarily consisted of an acicular/bainitic ferrite, retained austenite and martensite surrounded by allotriomorphic ferrite.The TEM analysis showed that a significant number of Nb(V,Mo)(C,N) precipitates were formed in the microstructure down to the finishing stage in Nb–V–Mo steel(i.e. 830℃). It was also found that the V(C,N)precipitation primarily occurred in both ferrite and deformed austenite below the finishing stage. The results suggested that Nb–Mo additions considerably increased the temperature stability of microalloy precipitates and controlled the microstructural evolution of austenite. However, the microalloy precipitation did not cause a significant precipitation strengthening in both Nb–V–Mo and V steels at room temperature. 展开更多
关键词 Microalloyed TRiP-assisted steel Thermomechanical processing precipitation behaviour Microstructural evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部