The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency ban...The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency band.However,multiscale combined modes of the synoptic and three low-frequency bands[10-20-d(quasi-biweekly,QBW);15-40-d(quasi-monthly,QM);and 20-60-d(intraseasonal)]accounted for the majority(63%)of the EPEs,and the precipitation intensity on the peak wet day was larger than that of the single synoptic mode.It was found that EPEs form within strong southwesterly anomalous flows characterized by either lower-level cyclonic circulation over SC or a deep trough over eastern China.Bandpass-filtered disturbances revealed the direct precipitating systems and their life cycles.Synoptic-scale disturbances are dominated by mid-high latitude troughs,and the cyclonic anomalies originate from downstream of the Tibetan Plateau(TP).Given the warm and moist climate state,synoptic-scale northeasterly flows can even induce EPEs.At the QBW and QM scales,the disturbances originate from the tropical Pacific,downstream of the TP,or mid-high latitudes(QBW only).Each is characterized by cyclonic-anticyclonic wave trains and intense southwesterly flows between them within a region of large horizontal pressure gradient.The intraseasonal disturbances are confined to tropical regions and influence SC by marginal southwesterly flows.It is concluded that low-frequency disturbances provide favorable background conditions for EPEs over SC and synoptic-scale disturbances ultimately induce EPEs on the peak wet days.Both should be simultaneously considered for EPE predictions over SC.展开更多
Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture tran...Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture transport and their associated background circulations for four types of regional extreme precipitation events(REPEs) over south China. Main findings are shown as follow.(i) The wind that transported moisture for the REPEs over south China featured a notable diurnal variation, which was consistent with the variations of the precipitation.(ii) Four types of REPEs could be determined, among which the southwest type(SWT) and the southeast type(SET) accounted for ~92%and ~5.7%, respectively, ranking the first and second, respectively.(iii) Trajectory analyses showed that the air particles of the SWT-REPEs had the largest specific humidity and experienced the most intense ascending motion, and therefore their precipitation was the strongest among the four types.(iv) South China was dominated by notable moisture flux convergence for the four types of REPEs, but their moisture transport was controlled by different flow paths.(v)Composite analyses indicated that the background circulation of the four types of REPEs showed different features,particularly for the intensity, location and coverage of a western Pacific subtropical high. For the SWT-REPEs, their moisture transport was mainly driven by a lower-tropospheric strong southwesterly wind band in the low-latitude regions. Air particles for this type of REPEs mainly passed over the Indochina Peninsula and South China Sea. For the SET-REPEs, their moisture transport was mainly steered by a strong low-tropospheric southeasterly wind northeast of a transversal trough. Air particles mainly passed over the South China Sea for this type of REPEs.展开更多
Daily precipitation amounts from 1961 to 2005 in 35 observation stations in Liaoning Province were selected in order to study the temporal and spatial distribution of extreme precipitation events.By dint of EOF,REOF,m...Daily precipitation amounts from 1961 to 2005 in 35 observation stations in Liaoning Province were selected in order to study the temporal and spatial distribution of extreme precipitation events.By dint of EOF,REOF,mean-square-error and other ways,the changes in different regions of extreme precipitation and distribution were reflected.The analysis showed that,extreme precipitation in Liaoning Province could be divided into three areas,which were western Liaoning mountains and parts of northern areas,eastern Liaoning mountainous,near-coastal areas of Liaohe River Plain.In the relatively large precipitation areas,extreme precipitation threshold was also higher,and vice versa.The lower frequency of extreme precipitation events had a greater contribution to total precipitation;extreme precipitation,total precipitation and total rain days had the greatest changes in the summer,and the least changes in the winter;number of days of extreme precipitation changes in each season were not great;the change of extreme precipitation was not obvious in the long term.展开更多
Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have ...Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have been performed in this paper. Results indicate that the percentage of heavy rains (above 25mm/day) in the annual rainfall has increased, while on average the day number of heavy rains has slightly reduced during the past 40 years. In the end of 1970s and the beginning of 1980s, both the number of days with extreme precipitation and the percentage of extreme precipitation abruptly changed over China, especially in the northern China. By moving t test, the abrupt change year of extreme precipitation for each station and its spatial distribution over the whole country are also obtained. The abrupt change years concentrated in 1978-1982 for most regions of northern China while occurred at various stations in southern China in greatly different/diverse years. Besides the abrupt change years of extreme precipitation at part stations of Northwest China happened about 5 years later in comparison with that of the country's average.展开更多
Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-langu...Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-language Climate Index (RClimDex). The spatial-temporal change characteristics in the past 50 years have been examined using the method of trend analysis, Mann-Kendall and the spatial analysis module of Arcgis9.2. The results show that the spatial distribution of the indices for extreme precipitation in Northwest China is greatly influenced by geographic location, atmospheric circulation and topography, and the spatial difference of extreme precipitation events is very evident, while the indices reduce from the southeast to the northwest except Consecutive Dry Days (CDD). In Xinjiang region, high values appear in Tianshan Mountains and decrease towards the south and north respectively. In the past 50 years, the temporal variation tendency of the indices for extreme precipitation in Northwest China has a great spatial distinction. It shows that the variation tendency is opposite between the east (decrease) and the west (increase), and CDD has a decreasing tendency while other indices increase. For each region, it is found that the indices for extreme precipitation in Xinjiang and Qinghai Province shows an increasing trend, and it is remarkable in Tianshan Mountains, the north of Xinjiang and the northeast of Qinghai Province. The temporal variation tendency of the indices for extreme precipitation in Ningxia, Shaanxi and Gansu has a large spatial distinction. The stations which have an increasing tend are mainly found in the north of Ningxia, south of Shaanxi and Hexi Corridor of Gansu. However, the south of Ningxia, north of Shaanxi and Longnan of Gansu Province mainly present a decreasing trend. The temporal variation tendency of the indices for extreme precipitation in Inner Mongolia is not obvious. Overall, the east part of Northwest China has a dry tendency, while the west part has an opposite trend.展开更多
In earlier studies,objective techniques have been used to determine the contribution of tropical cyclones to precipitation(TCP)in a region,where the Tropical cyclone Precipitation Event(TPE)and the Regional Heavy Prec...In earlier studies,objective techniques have been used to determine the contribution of tropical cyclones to precipitation(TCP)in a region,where the Tropical cyclone Precipitation Event(TPE)and the Regional Heavy Precipitation Events(RHPEs)are defined and investigated.In this study,TPE and RHPEs are combined to determine the Typhoon Regional Heavy Precipitation Events(TRHPEs),which is employed to evaluate the contribution of tropical cyclones to regional extreme precipitation events.Based on the Objective Identification Technique for Regional Extreme Events(OITREE)and the Objective Synoptic Analysis Technique(OSAT)to define TPE,temporal and spatial overlap indices are developed to identify the combined events as TRHPE.With daily precipitation data and TC best-track data over the western North Pacific from 1960 to 2018,86 TRHPEs have been identified.TRHPEs contribute as much as 20%of the RHPEs,but100%of events with extreme individual precipitation intensities.The major TRHPEs continued for approximately a week after tropical cyclone landfall,indicating a role of post landfall precipitation.The frequency and extreme intensity of TRHPEs display increasing trends,consistent with an observed positive trend in the mean intensity of TPEs as measured by the number of daily station precipitation observations exceeding 100 mm and 250 mm.More frequent landfalling Southeast and South China TCs induced more serious impacts in coastal areas in the Southeast and the South during 1990-2018 than1960-89.The roles of cyclone translation speed and"shifts"in cyclone tracks are examined as possible explanations for the temporal trends.展开更多
Based on monthly mean wind,geopotential height,specific humidity,and surface pressure of NCAR/NCEP reanalysis,NOAA-reconstructed sea surface temperature (SST) of the Indian Ocean,and daily precipitation data at 97 met...Based on monthly mean wind,geopotential height,specific humidity,and surface pressure of NCAR/NCEP reanalysis,NOAA-reconstructed sea surface temperature (SST) of the Indian Ocean,and daily precipitation data at 97 meteorological stations over the eastern NW China in the past 47 years,the threshold values for extreme precipitation events (EPE) are defined using the percentile method.Singular Value Decomposition and synthetic analysis methods are used to analyze the relationship between summer EPE in the eastern NW China and SSTA in the preceding fall,winter,spring,and the concurrent summer.The result shows that preceding spring SST anomalies (SSTA) in the Indian Ocean are clear indicators for the forecast of summer EPE in the eastern NW China,and a key area of impact is located in the equatorial Indian Ocean.When spring SST is anomalously high in the equatorial Indian Ocean,the meridional circulation averaged over 100°E-110°E will be anomalously ascending near the equator but anomalously descending near 30°N in the middle and upper troposphere from the concurrent to the subsequent summer.In the meantime,the Southwest Monsoon from the Indian Ocean will be anomalously weak and there will be no anomalous water vapor transport to the eastern NW China,resulting in a lack of EPE in the subsequent summer,and vice versa.In addition,in response to anomalously high SST in the equatorial Indian Ocean in spring,the South Asia high pressure tends to be strong in the subsequent summer and more to the west.In the anomalously low SST year,however,the South Asia high tends to be weak in the subsequent summer and more to the east.This is another possible cause of the variation of summer EPE in the eastern NW China.展开更多
The Tibetan Plateau(TP)is one of the most sensitive areas and is more susceptible to climate change than other regions in China.The TP also experiences extremely frequent light precipitation events compared to precipi...The Tibetan Plateau(TP)is one of the most sensitive areas and is more susceptible to climate change than other regions in China.The TP also experiences extremely frequent light precipitation events compared to precipitation of other intensities.However,the definition,influencing factors,and characteristics of light precipitation in the TP have not been accurately explained.This study investigated the variation characteristics of light precipitation with intensities(Pre)of 0.1-10.0 mm/d based on climate data from 53 meteorological stations over the central and eastern TP from 1961 to 2019.For detailed analysis,light precipitation events were classified into five grades:G1[0.1-2.0 mm/d),G2[2.0-4.0 mm/d),G3[4.0-6.0 mm/d),G4[6.0-8.0 mm/d),and G5[8.0-10.0 mm/d).The results showed that both the amount of precipitation and number of precipitation days had increased significantly at rates of 4.0-6.0 mm/10 yr and 2.0-4.0 d/10 yr,respectively,and most precipitation events were of low intensity(0.1≤Pre<2.0 mm/d).Light precipitation events mainly occurred in the southeast of the study area,and it showed an increasing trend from the northwest to the southeast.Abrupt changes in light precipitation primarily occurred in the 1980 s.A comprehensive time series analysis using the Mann-Kendall test and Morlet wavelet was performed to characterize the abrupt changes and cycles of light precipitation.During the study period,the main periods of light precipitation corresponded to the 6 yr cycle,with obvious periodic oscillation characteristics,and this cycle coexisted with cycles of other scales.Significant correlations were observed between the amount of light precipitation and temperature over the study area.The findings will enhance our understanding of changes in light precipitation in the TP and provide Scientific basis for the definition of light precipitation in the future.展开更多
[ Objective] The aim was to study the spatial and temporal changes of extreme precipitation events in Ningxia in recent 50 years. [ Method] Using dally precipitation data at 20 stations in Ningxia from 1961 to 2010, a...[ Objective] The aim was to study the spatial and temporal changes of extreme precipitation events in Ningxia in recent 50 years. [ Method] Using dally precipitation data at 20 stations in Ningxia from 1961 to 2010, and defining the threshold value of extreme precipitation in each sta- tion by percentage method, choosing indicators such as precipitation, frequency and intensity of extreme precipitation events, the characteristics of the spatial and temporal distribution and linear trend of extreme precipitation events in Ningxia were analyzed based on linear regression and M-K non-parameter statistical test method. [ Result] The percentage method suggested the threshold value of average extreme precipitation in Ningxia in recent 50 years decreased from south to north. The large threshold value was in southern Haiyuan, Tongxin and northern Yancheng, which was similar to the distribution of mean annual precipitation in Ningxia. In recent 50 years, extreme precipitation frequency and extreme precipitation de- creased in most part of Ningxia but the intensity tended to strengthen. Study of extreme precipitation in Mahuang Mountain and Liupan Mountain in- dicated that precipitation frequency, intensity and extreme precipitation reduced. Annual extreme precipitation frequency narrowed and then in- creased after 1994 and had mutation in 2003. Annual extreme precipitation intensity enhanced since 1984. Mutation took place in 1984. Intensity in Liupan Mountain had weakened since 1978. [ Conclusion] The study provided theoretical basis for the mutation of climate in Ningxia.展开更多
Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about t...Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.展开更多
Precipitation events spanning multiple days may have consequences different from those limited to a single day.In the present paper,the authors analyze circulation anomalies and precursory signals associated with long...Precipitation events spanning multiple days may have consequences different from those limited to a single day.In the present paper,the authors analyze circulation anomalies and precursory signals associated with long-duration(over 14 days) summer precipitation events over southern China.The results show that the over-14-day precipitation events are induced by an anomalous lowertropospheric(850-hPa) cyclone over the South China Sea(SCS) and southern China.The anomalous westerly winds to the south of the anomalous cyclone can be traced to north of New Guinea 30 days before.To the north of anomalous westerly winds,anomalous easterly winds appear later.The anomalous westerly and easterly winds form a cyclonic anomaly,moving northward and slightly westward during the following days and eventually controlling the SCS and southern China.The northward movement of anomalous westerly and easterly winds can also be found in the 30-60-day filtered wind field.This implies that the northward propagating 30-60-day intraseasonal oscillation from the equatorial western Pacific has an important contribution to over-14-day precipitation events over southern China.展开更多
Central East China is an area where both intense hourly precipitation(IHP) events and mesoscale convection systems(MCSs) occur frequently in the warm seasons. Based on mosaics of composite Doppler radar reflectivi...Central East China is an area where both intense hourly precipitation(IHP) events and mesoscale convection systems(MCSs) occur frequently in the warm seasons. Based on mosaics of composite Doppler radar reflectivity and hourly precipitation data during the warm seasons(May to September) from 1 July 2007 to 30 June 2011, the contribution of MCSs to IHP events exceeding 20 mm h^-1 over central East China was evaluated. An MCS was defined as a continuous or quasicontinuous band of 40d BZ reflectivity that extended for at least 100 km in at least one direction and lasted for at least 3h. It was found that the contribution of MCSs to IHP events was 45% on average over central East China. The largest contribution,more than 80%, was observed along the lower reaches of the Yellow River and in the Yangtze River–Huaihe River valleys.These regions were the source regions of MCSs, or along the frequent tracks of MCSs. There were two daily peaks in the numbers of IHP events: one in the late afternoon and one in the early morning. These peaks were more pronounced in July than in other months. MCSs contributed more to the early-morning IHP event peaks than to the late-afternoon peaks. The contributions of MCSs to IHP events with different intensities exhibited no significant difference, which fluctuated around 50% on average over central East China.展开更多
Fifty cases of regional yearly extreme precipitation events (RYEPEs) were identified over the Yangtze-Huaihe River Valley (YHRV) during 1979-2016 applying the statistical percentile method. There were five types o...Fifty cases of regional yearly extreme precipitation events (RYEPEs) were identified over the Yangtze-Huaihe River Valley (YHRV) during 1979-2016 applying the statistical percentile method. There were five types of RYEPEs, namely Yangtze Meiyu (YM-RYEPE), Huaihe Meiyu (HM-RYEPE), southwest-northeast-oriented Meiyu (SWNE-RYEPE) and typhoon I and II (TC-RYEPE) types of RYEPEs. Potential vorticity diagnosis showed that propagation trajectories of the RYEPEs along the Western Pacific Subtropical High and its steering flow were concentrated over the southern YHRV. As a result, the strongest and most frequently RYEPEs events, about 16-21 cases with average rainfall above 100 mm, occurred in the southern YHRV, particularly in the Nanjing metropolitan area. There have been 14 cases of flood-inducing RYEPEs since 1979, with the submerged area exceeding 120 km2 as simulated by the FloodArea hydraulic model, comprising six HM-RYEPEs, five YM- RYEPEs, two TC-RYEPEs, and one SWNE-RYEPE. The combination of evolving RYEPEs and rapid expansion of urban agglomeration is most likely to change the flood risk distribution over the Nanjing metropolitan area in the future. In the RCP6.0 (RCPS.5) scenario, the built-up area increases at a rate of about 10.41 km2 (10 yr)-t(24.67 km2 (10 yr)-1) from 2010 to 2100, and the area of high flood risk correspondingly increases from 3.86 km2(3.86 km2) to 9.00 kin2(13.51 km2). Areas of high flood risk are mainly located at Chishan Lake in Jurong, Lukou International Airport in Nanjing, Dongshan in Jiangning District, Lishui District and other low-lying areas. The accurate simulation of flood scenarios can help reduce losses due to torrential flooding and improve early warnings, evacuation planning and risk analysis. More attention should be paid to the projected high flood risk because of the concentrated population, industrial zones and social wealth throughout the Nanjing metropolitan area.展开更多
Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World...Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World Meteorology Organization Commission, including annual precipitation total (AP), maximum daily precipitation (Maxld), intensity of rainfall over 1 mm/d (IR1), maximum and mean consecutive dry days (Max CDD, Mean CDD) and coefficient of variance. Based on 24 daily precipitation time series from 1951 to 2o11, Mann-Kendall test is employed to quantify the significant level of these indices, from which the classification of precipitation change and its spatial patterns are obtained. Meanwhile, the probability distributions of these indices are identified by L-moment analysis and the Goodness-of-fit test, and the corresponding values are calculated by theoretical model at different return periods. The results reveal that the western basin displays normal drought: less AP and precipitation intensity while longer drought. The southern basin shows normal increase: larger AP and precipitation intensity but shorter CDD. However, in hilly region of the central basin and the transition zone between basin and mountains, precipitation changes abnormally: increasing both drought (one or both of Mean CDD and MaxCDD) and precipitation intensity (one or both of Maxld and trend of AP is. Probability IR1) no matter what the distribution models also demonstrate the complex patterns: a negative correlation between Maxld and Max CDD in the west (R2≥0.61) while a positive correlation in the east (R2≥0.41) at all return periods. These patterns are induced by the changes in WV sources and the layout of local terrain. The increase of WV in summer and decrease in spring leads to the heavier rainfall and longer drought respectively. The large heat island effect of the basin contributes to a lower temperature in transition zones and more precipitation in the downwind area. These results are helpful in reevaluating the risk regionally and making better decisions on water resources management and disaster prevention.展开更多
Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6...Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.展开更多
This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 200...This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960 s and 1980 s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980 s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests.展开更多
A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum dail...A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum daily rainfall and heavy precipitation days (≥50 mm d^-1) are analyzed for the basins of the Songhua River, Liaohe River, Haihe River, Yellow River, Northwest China Rivers, Huaihe River, Yangtze River, Pearl River, Southeast China Rivers, and Southwest China Rivers. The results indicate that the maximum daily rainfall was increasing in southern river basins, while it was decreasing in northern river basins, which leads to no discernible increasing or decreasing trend in the maximum daily rainfall of whole China,especially 2001. The national averaged heavy precipitation days shows an insignificant increase. However, a rise in heavy precipitation days of southern river basins and a decline of northern river basins are observed.展开更多
Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitativ...Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitative criteria were developed to define PHR events by means of their precipitation intensity, temporal duration, spatial extent and persistence. Then a semi-objective classification based on these criteria was applied to summer daily rainfall data to identify all PHR events. A total of 197 events were observed during the study period. All events were further classified into 5 categories according to their comprehensive intensity; into 3 types according to their circulation regime; and into 8 groups according to the geographic locations of their rainbands. Based on these different classifications, finally, the behaviors of 130 PHR events identified as the most severe, severe and moderate categories since the year of 1951, including characteristics of the spatial and temporal distributions of their frequencies, intensities, and rainbands, were investigated in order to present a comprehensive description of the PHR events. The results will be helpful to the future study of revealing and understanding the processes that govern the production of the PHR events and to the improvement of the forecasts of the PHR events.展开更多
The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavele...The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indicated that: 1) Spatial distribution of RID is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at 〉95% confidence level in Jialingjiang River basin and insignificant at 〉95% confidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of RID extreme precipitation at 〉95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at 〉95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at 〉95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at 〉95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Precipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies between 1993-2002 and 1961-1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River basin, esp. in the southwestern and southeastern parts of the Yangtze River basin.展开更多
A strong precipitation event caused by the southwest vortex(SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10–14 July 2012, is investigated. The SWV is examined using satelli...A strong precipitation event caused by the southwest vortex(SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10–14 July 2012, is investigated. The SWV is examined using satellite observations from AIRS(Atmospheric Infrared Sounder), in situ measurements from the SWV intensive observation campaign, and MICAPS(Marine Interactive Computer-Aided Provisioning System) data. Analysis of this precipitation process revealed that:(1)heavy rain occurred during the development phase, and cloud water content increased significantly after the dissipation of the SWV;(2) the area with low outgoing longwave radiation values from AIRS correlated well with the SWV;(3) variation of the temperature of brightness blackbody(TBB) from AIRS reflected the evolution of the SWV, and the values of TBB reduced significantly during the SWV's development; and(4) strong temperature and water vapor inversions were noted during the development of the SWV. The moisture profile displayed large vertical variation during the SWV's puissant phase,with the moisture inversion occurring at low levels. The moisture content during the receding phase was significantly reduced compared with that during the developing and puissant phases. The vertical flux of vapor divergence explained the variation of the moisture profile. These results also indicate the potential for using AIRS products in studying severe weather over the Tibetan Plateau and its surroundings, where in situ measurements are sparse.展开更多
基金supported by the National Key R&D Program of China(Grant No.2018YFC1507403)。
文摘The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency band.However,multiscale combined modes of the synoptic and three low-frequency bands[10-20-d(quasi-biweekly,QBW);15-40-d(quasi-monthly,QM);and 20-60-d(intraseasonal)]accounted for the majority(63%)of the EPEs,and the precipitation intensity on the peak wet day was larger than that of the single synoptic mode.It was found that EPEs form within strong southwesterly anomalous flows characterized by either lower-level cyclonic circulation over SC or a deep trough over eastern China.Bandpass-filtered disturbances revealed the direct precipitating systems and their life cycles.Synoptic-scale disturbances are dominated by mid-high latitude troughs,and the cyclonic anomalies originate from downstream of the Tibetan Plateau(TP).Given the warm and moist climate state,synoptic-scale northeasterly flows can even induce EPEs.At the QBW and QM scales,the disturbances originate from the tropical Pacific,downstream of the TP,or mid-high latitudes(QBW only).Each is characterized by cyclonic-anticyclonic wave trains and intense southwesterly flows between them within a region of large horizontal pressure gradient.The intraseasonal disturbances are confined to tropical regions and influence SC by marginal southwesterly flows.It is concluded that low-frequency disturbances provide favorable background conditions for EPEs over SC and synoptic-scale disturbances ultimately induce EPEs on the peak wet days.Both should be simultaneously considered for EPE predictions over SC.
基金National Key Research and Development Program of China(2019YFC1510400)National Natural Science Foundation of China(42075002)。
文摘Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture transport and their associated background circulations for four types of regional extreme precipitation events(REPEs) over south China. Main findings are shown as follow.(i) The wind that transported moisture for the REPEs over south China featured a notable diurnal variation, which was consistent with the variations of the precipitation.(ii) Four types of REPEs could be determined, among which the southwest type(SWT) and the southeast type(SET) accounted for ~92%and ~5.7%, respectively, ranking the first and second, respectively.(iii) Trajectory analyses showed that the air particles of the SWT-REPEs had the largest specific humidity and experienced the most intense ascending motion, and therefore their precipitation was the strongest among the four types.(iv) South China was dominated by notable moisture flux convergence for the four types of REPEs, but their moisture transport was controlled by different flow paths.(v)Composite analyses indicated that the background circulation of the four types of REPEs showed different features,particularly for the intensity, location and coverage of a western Pacific subtropical high. For the SWT-REPEs, their moisture transport was mainly driven by a lower-tropospheric strong southwesterly wind band in the low-latitude regions. Air particles for this type of REPEs mainly passed over the Indochina Peninsula and South China Sea. For the SET-REPEs, their moisture transport was mainly steered by a strong low-tropospheric southeasterly wind northeast of a transversal trough. Air particles mainly passed over the South China Sea for this type of REPEs.
文摘Daily precipitation amounts from 1961 to 2005 in 35 observation stations in Liaoning Province were selected in order to study the temporal and spatial distribution of extreme precipitation events.By dint of EOF,REOF,mean-square-error and other ways,the changes in different regions of extreme precipitation and distribution were reflected.The analysis showed that,extreme precipitation in Liaoning Province could be divided into three areas,which were western Liaoning mountains and parts of northern areas,eastern Liaoning mountainous,near-coastal areas of Liaohe River Plain.In the relatively large precipitation areas,extreme precipitation threshold was also higher,and vice versa.The lower frequency of extreme precipitation events had a greater contribution to total precipitation;extreme precipitation,total precipitation and total rain days had the greatest changes in the summer,and the least changes in the winter;number of days of extreme precipitation changes in each season were not great;the change of extreme precipitation was not obvious in the long term.
基金Project supported by the National Natural Science Foundation of China (Grant No 40675044)the State Key Development Program for Basic Research of China (Grant No 2006CB400503)the Laboratory for Climate Studies of China Meteorological Administration Climate Research Program (Grant No LCS-2006-04)
文摘Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have been performed in this paper. Results indicate that the percentage of heavy rains (above 25mm/day) in the annual rainfall has increased, while on average the day number of heavy rains has slightly reduced during the past 40 years. In the end of 1970s and the beginning of 1980s, both the number of days with extreme precipitation and the percentage of extreme precipitation abruptly changed over China, especially in the northern China. By moving t test, the abrupt change year of extreme precipitation for each station and its spatial distribution over the whole country are also obtained. The abrupt change years concentrated in 1978-1982 for most regions of northern China while occurred at various stations in southern China in greatly different/diverse years. Besides the abrupt change years of extreme precipitation at part stations of Northwest China happened about 5 years later in comparison with that of the country's average.
基金Supported by the Natural Science Foundation of Shandong Province,China(ZR2010DM011)
文摘Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-language Climate Index (RClimDex). The spatial-temporal change characteristics in the past 50 years have been examined using the method of trend analysis, Mann-Kendall and the spatial analysis module of Arcgis9.2. The results show that the spatial distribution of the indices for extreme precipitation in Northwest China is greatly influenced by geographic location, atmospheric circulation and topography, and the spatial difference of extreme precipitation events is very evident, while the indices reduce from the southeast to the northwest except Consecutive Dry Days (CDD). In Xinjiang region, high values appear in Tianshan Mountains and decrease towards the south and north respectively. In the past 50 years, the temporal variation tendency of the indices for extreme precipitation in Northwest China has a great spatial distinction. It shows that the variation tendency is opposite between the east (decrease) and the west (increase), and CDD has a decreasing tendency while other indices increase. For each region, it is found that the indices for extreme precipitation in Xinjiang and Qinghai Province shows an increasing trend, and it is remarkable in Tianshan Mountains, the north of Xinjiang and the northeast of Qinghai Province. The temporal variation tendency of the indices for extreme precipitation in Ningxia, Shaanxi and Gansu has a large spatial distinction. The stations which have an increasing tend are mainly found in the north of Ningxia, south of Shaanxi and Hexi Corridor of Gansu. However, the south of Ningxia, north of Shaanxi and Longnan of Gansu Province mainly present a decreasing trend. The temporal variation tendency of the indices for extreme precipitation in Inner Mongolia is not obvious. Overall, the east part of Northwest China has a dry tendency, while the west part has an opposite trend.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1507703)the National Natural Science Foundation of China(Grant No.41675042)the Jiangsu Collaborative Innovation Center for Climate Change。
文摘In earlier studies,objective techniques have been used to determine the contribution of tropical cyclones to precipitation(TCP)in a region,where the Tropical cyclone Precipitation Event(TPE)and the Regional Heavy Precipitation Events(RHPEs)are defined and investigated.In this study,TPE and RHPEs are combined to determine the Typhoon Regional Heavy Precipitation Events(TRHPEs),which is employed to evaluate the contribution of tropical cyclones to regional extreme precipitation events.Based on the Objective Identification Technique for Regional Extreme Events(OITREE)and the Objective Synoptic Analysis Technique(OSAT)to define TPE,temporal and spatial overlap indices are developed to identify the combined events as TRHPE.With daily precipitation data and TC best-track data over the western North Pacific from 1960 to 2018,86 TRHPEs have been identified.TRHPEs contribute as much as 20%of the RHPEs,but100%of events with extreme individual precipitation intensities.The major TRHPEs continued for approximately a week after tropical cyclone landfall,indicating a role of post landfall precipitation.The frequency and extreme intensity of TRHPEs display increasing trends,consistent with an observed positive trend in the mean intensity of TPEs as measured by the number of daily station precipitation observations exceeding 100 mm and 250 mm.More frequent landfalling Southeast and South China TCs induced more serious impacts in coastal areas in the Southeast and the South during 1990-2018 than1960-89.The roles of cyclone translation speed and"shifts"in cyclone tracks are examined as possible explanations for the temporal trends.
基金National Development Program on Key Foundamental Research of China (2006CB400504)Special Research Program for Public Welfare (Meteorology) of China (GYHY200906016)a project of Research Foundation for Plateau Meteorology (LAP2007002)
文摘Based on monthly mean wind,geopotential height,specific humidity,and surface pressure of NCAR/NCEP reanalysis,NOAA-reconstructed sea surface temperature (SST) of the Indian Ocean,and daily precipitation data at 97 meteorological stations over the eastern NW China in the past 47 years,the threshold values for extreme precipitation events (EPE) are defined using the percentile method.Singular Value Decomposition and synthetic analysis methods are used to analyze the relationship between summer EPE in the eastern NW China and SSTA in the preceding fall,winter,spring,and the concurrent summer.The result shows that preceding spring SST anomalies (SSTA) in the Indian Ocean are clear indicators for the forecast of summer EPE in the eastern NW China,and a key area of impact is located in the equatorial Indian Ocean.When spring SST is anomalously high in the equatorial Indian Ocean,the meridional circulation averaged over 100°E-110°E will be anomalously ascending near the equator but anomalously descending near 30°N in the middle and upper troposphere from the concurrent to the subsequent summer.In the meantime,the Southwest Monsoon from the Indian Ocean will be anomalously weak and there will be no anomalous water vapor transport to the eastern NW China,resulting in a lack of EPE in the subsequent summer,and vice versa.In addition,in response to anomalously high SST in the equatorial Indian Ocean in spring,the South Asia high pressure tends to be strong in the subsequent summer and more to the west.In the anomalously low SST year,however,the South Asia high tends to be weak in the subsequent summer and more to the east.This is another possible cause of the variation of summer EPE in the eastern NW China.
基金Under the auspices of the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK040)Key Technologies Research and Development Program of Shaanxi Province(No.2021ZDLSF05-02)+2 种基金The National Natural Science Foundation of China(No.42072208,42101100,41901129)The Fundamental Research Funds for the Central Universities(No.GK202001003)Natural Science Foundation of Shaanxi Province(No.2021JQ-313)。
文摘The Tibetan Plateau(TP)is one of the most sensitive areas and is more susceptible to climate change than other regions in China.The TP also experiences extremely frequent light precipitation events compared to precipitation of other intensities.However,the definition,influencing factors,and characteristics of light precipitation in the TP have not been accurately explained.This study investigated the variation characteristics of light precipitation with intensities(Pre)of 0.1-10.0 mm/d based on climate data from 53 meteorological stations over the central and eastern TP from 1961 to 2019.For detailed analysis,light precipitation events were classified into five grades:G1[0.1-2.0 mm/d),G2[2.0-4.0 mm/d),G3[4.0-6.0 mm/d),G4[6.0-8.0 mm/d),and G5[8.0-10.0 mm/d).The results showed that both the amount of precipitation and number of precipitation days had increased significantly at rates of 4.0-6.0 mm/10 yr and 2.0-4.0 d/10 yr,respectively,and most precipitation events were of low intensity(0.1≤Pre<2.0 mm/d).Light precipitation events mainly occurred in the southeast of the study area,and it showed an increasing trend from the northwest to the southeast.Abrupt changes in light precipitation primarily occurred in the 1980 s.A comprehensive time series analysis using the Mann-Kendall test and Morlet wavelet was performed to characterize the abrupt changes and cycles of light precipitation.During the study period,the main periods of light precipitation corresponded to the 6 yr cycle,with obvious periodic oscillation characteristics,and this cycle coexisted with cycles of other scales.Significant correlations were observed between the amount of light precipitation and temperature over the study area.The findings will enhance our understanding of changes in light precipitation in the TP and provide Scientific basis for the definition of light precipitation in the future.
基金Supported by Climate Changes in Chinese Meteorological Bureau (CCSF2011-26)Ningxia Science and Technology Development(KGX12-09-02)Ningxia Natural Science Fund(NZ11246) and (NZ10212)
文摘[ Objective] The aim was to study the spatial and temporal changes of extreme precipitation events in Ningxia in recent 50 years. [ Method] Using dally precipitation data at 20 stations in Ningxia from 1961 to 2010, and defining the threshold value of extreme precipitation in each sta- tion by percentage method, choosing indicators such as precipitation, frequency and intensity of extreme precipitation events, the characteristics of the spatial and temporal distribution and linear trend of extreme precipitation events in Ningxia were analyzed based on linear regression and M-K non-parameter statistical test method. [ Result] The percentage method suggested the threshold value of average extreme precipitation in Ningxia in recent 50 years decreased from south to north. The large threshold value was in southern Haiyuan, Tongxin and northern Yancheng, which was similar to the distribution of mean annual precipitation in Ningxia. In recent 50 years, extreme precipitation frequency and extreme precipitation de- creased in most part of Ningxia but the intensity tended to strengthen. Study of extreme precipitation in Mahuang Mountain and Liupan Mountain in- dicated that precipitation frequency, intensity and extreme precipitation reduced. Annual extreme precipitation frequency narrowed and then in- creased after 1994 and had mutation in 2003. Annual extreme precipitation intensity enhanced since 1984. Mutation took place in 1984. Intensity in Liupan Mountain had weakened since 1978. [ Conclusion] The study provided theoretical basis for the mutation of climate in Ningxia.
基金jointly supported by the National Natural Science Foundation of China(31400425,31570437,41301043,31420103917)the National Key Project of Scientific and Technical Supporting Program(2013BAC03B03)+1 种基金the Funding for Talented Young Scientists of IGSNRR(2013RC203)the Social Foundation of Beijing Academy of Social Sciences(154005)
文摘Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.
基金supported by the National Natural Science Foundation of China[grant numbers 41375090 and 41530425]the Basic Research Fund of the Chinese Academy of Meteorological Sciences[grant number 2015Z001]
文摘Precipitation events spanning multiple days may have consequences different from those limited to a single day.In the present paper,the authors analyze circulation anomalies and precursory signals associated with long-duration(over 14 days) summer precipitation events over southern China.The results show that the over-14-day precipitation events are induced by an anomalous lowertropospheric(850-hPa) cyclone over the South China Sea(SCS) and southern China.The anomalous westerly winds to the south of the anomalous cyclone can be traced to north of New Guinea 30 days before.To the north of anomalous westerly winds,anomalous easterly winds appear later.The anomalous westerly and easterly winds form a cyclonic anomaly,moving northward and slightly westward during the following days and eventually controlling the SCS and southern China.The northward movement of anomalous westerly and easterly winds can also be found in the 30-60-day filtered wind field.This implies that the northward propagating 30-60-day intraseasonal oscillation from the equatorial western Pacific has an important contribution to over-14-day precipitation events over southern China.
基金supported by the Chinese 973 program (Grant No.2013CB430104)the Chinese National Science Foundation (Grant Nos.41330421 and 41461164006)
文摘Central East China is an area where both intense hourly precipitation(IHP) events and mesoscale convection systems(MCSs) occur frequently in the warm seasons. Based on mosaics of composite Doppler radar reflectivity and hourly precipitation data during the warm seasons(May to September) from 1 July 2007 to 30 June 2011, the contribution of MCSs to IHP events exceeding 20 mm h^-1 over central East China was evaluated. An MCS was defined as a continuous or quasicontinuous band of 40d BZ reflectivity that extended for at least 100 km in at least one direction and lasted for at least 3h. It was found that the contribution of MCSs to IHP events was 45% on average over central East China. The largest contribution,more than 80%, was observed along the lower reaches of the Yellow River and in the Yangtze River–Huaihe River valleys.These regions were the source regions of MCSs, or along the frequent tracks of MCSs. There were two daily peaks in the numbers of IHP events: one in the late afternoon and one in the early morning. These peaks were more pronounced in July than in other months. MCSs contributed more to the early-morning IHP event peaks than to the late-afternoon peaks. The contributions of MCSs to IHP events with different intensities exhibited no significant difference, which fluctuated around 50% on average over central East China.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41205063 & 41330529)the China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201506006)+1 种基金the Project of Development of Key Techniques in Meteorological Forecasting Operation (Grant No. CMAHX20160404)the Huaihe Basin Meteorological Research Foundation (Grant No. HRM201605)
文摘Fifty cases of regional yearly extreme precipitation events (RYEPEs) were identified over the Yangtze-Huaihe River Valley (YHRV) during 1979-2016 applying the statistical percentile method. There were five types of RYEPEs, namely Yangtze Meiyu (YM-RYEPE), Huaihe Meiyu (HM-RYEPE), southwest-northeast-oriented Meiyu (SWNE-RYEPE) and typhoon I and II (TC-RYEPE) types of RYEPEs. Potential vorticity diagnosis showed that propagation trajectories of the RYEPEs along the Western Pacific Subtropical High and its steering flow were concentrated over the southern YHRV. As a result, the strongest and most frequently RYEPEs events, about 16-21 cases with average rainfall above 100 mm, occurred in the southern YHRV, particularly in the Nanjing metropolitan area. There have been 14 cases of flood-inducing RYEPEs since 1979, with the submerged area exceeding 120 km2 as simulated by the FloodArea hydraulic model, comprising six HM-RYEPEs, five YM- RYEPEs, two TC-RYEPEs, and one SWNE-RYEPE. The combination of evolving RYEPEs and rapid expansion of urban agglomeration is most likely to change the flood risk distribution over the Nanjing metropolitan area in the future. In the RCP6.0 (RCPS.5) scenario, the built-up area increases at a rate of about 10.41 km2 (10 yr)-t(24.67 km2 (10 yr)-1) from 2010 to 2100, and the area of high flood risk correspondingly increases from 3.86 km2(3.86 km2) to 9.00 kin2(13.51 km2). Areas of high flood risk are mainly located at Chishan Lake in Jurong, Lukou International Airport in Nanjing, Dongshan in Jiangning District, Lishui District and other low-lying areas. The accurate simulation of flood scenarios can help reduce losses due to torrential flooding and improve early warnings, evacuation planning and risk analysis. More attention should be paid to the projected high flood risk because of the concentrated population, industrial zones and social wealth throughout the Nanjing metropolitan area.
基金funded by open funding of Guizhou Provincial Key Laboratory of Public Big Data(Guizhou University, Grant No.2017BDKFJJ021)Special Science and Technology Funding of Guizhou Province Water Resources Department (KT201707)+1 种基金Guizhou Province Science and Technology Joint Founding (LH [2017]7617)China Postdoctoral Science Foundation (Grant No.2016M5 92671)
文摘Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World Meteorology Organization Commission, including annual precipitation total (AP), maximum daily precipitation (Maxld), intensity of rainfall over 1 mm/d (IR1), maximum and mean consecutive dry days (Max CDD, Mean CDD) and coefficient of variance. Based on 24 daily precipitation time series from 1951 to 2o11, Mann-Kendall test is employed to quantify the significant level of these indices, from which the classification of precipitation change and its spatial patterns are obtained. Meanwhile, the probability distributions of these indices are identified by L-moment analysis and the Goodness-of-fit test, and the corresponding values are calculated by theoretical model at different return periods. The results reveal that the western basin displays normal drought: less AP and precipitation intensity while longer drought. The southern basin shows normal increase: larger AP and precipitation intensity but shorter CDD. However, in hilly region of the central basin and the transition zone between basin and mountains, precipitation changes abnormally: increasing both drought (one or both of Mean CDD and MaxCDD) and precipitation intensity (one or both of Maxld and trend of AP is. Probability IR1) no matter what the distribution models also demonstrate the complex patterns: a negative correlation between Maxld and Max CDD in the west (R2≥0.61) while a positive correlation in the east (R2≥0.41) at all return periods. These patterns are induced by the changes in WV sources and the layout of local terrain. The increase of WV in summer and decrease in spring leads to the heavier rainfall and longer drought respectively. The large heat island effect of the basin contributes to a lower temperature in transition zones and more precipitation in the downwind area. These results are helpful in reevaluating the risk regionally and making better decisions on water resources management and disaster prevention.
基金supported by the Gansu Province Science Fund for Distinguished Young Scholars (1506RJDA282)the National Natural Science Foundation of China (41271039, 91547102)+2 种基金the Open Foundation of MOE Key Laboratory of Western China’s Environmental System of Lanzhou Universitythe Open Foundation from State Key Laboratory (SKLFSE201403)the West Light Program for Talent Cultivation of Chinese Academy of Sciences
文摘Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.
基金"Variations of Extremely Heavy Precipitation and Their Response to Global Climate Change",a project in Research Fund for the Science of Tropical Marine and Meteorology(200804)"On the Regional Extremely Heavy Rain in South China Under the Background of Climate Warming,a project in Special China Meteorological Administration Program for Climate Change(CCSF-09-03)Assessment Report on the Climate Change in the South China Region(CCSF-09-11)
文摘This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960 s and 1980 s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980 s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests.
基金supported by the Ministry of Water Resource of China(GYHY200801001)National Key Technologies R&D Program(2007BAC29B02 and 2007BAC29B05)+2 种基金National Basic Research Program (2010CB428401)Ministry of Science and Technology of China(2010DFA21340)and China Meteorological Administration(540000G010C01)
文摘A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum daily rainfall and heavy precipitation days (≥50 mm d^-1) are analyzed for the basins of the Songhua River, Liaohe River, Haihe River, Yellow River, Northwest China Rivers, Huaihe River, Yangtze River, Pearl River, Southeast China Rivers, and Southwest China Rivers. The results indicate that the maximum daily rainfall was increasing in southern river basins, while it was decreasing in northern river basins, which leads to no discernible increasing or decreasing trend in the maximum daily rainfall of whole China,especially 2001. The national averaged heavy precipitation days shows an insignificant increase. However, a rise in heavy precipitation days of southern river basins and a decline of northern river basins are observed.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40575015.
文摘Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitative criteria were developed to define PHR events by means of their precipitation intensity, temporal duration, spatial extent and persistence. Then a semi-objective classification based on these criteria was applied to summer daily rainfall data to identify all PHR events. A total of 197 events were observed during the study period. All events were further classified into 5 categories according to their comprehensive intensity; into 3 types according to their circulation regime; and into 8 groups according to the geographic locations of their rainbands. Based on these different classifications, finally, the behaviors of 130 PHR events identified as the most severe, severe and moderate categories since the year of 1951, including characteristics of the spatial and temporal distributions of their frequencies, intensities, and rainbands, were investigated in order to present a comprehensive description of the PHR events. The results will be helpful to the future study of revealing and understanding the processes that govern the production of the PHR events and to the improvement of the forecasts of the PHR events.
基金Funded by the Nanjing Institute of Geography and Limnology, CAS, No.S260018 The Chinese Meteoro-logical Administration, No.ccsf2006-31
文摘The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indicated that: 1) Spatial distribution of RID is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at 〉95% confidence level in Jialingjiang River basin and insignificant at 〉95% confidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of RID extreme precipitation at 〉95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at 〉95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at 〉95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at 〉95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Precipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies between 1993-2002 and 1961-1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River basin, esp. in the southwestern and southeastern parts of the Yangtze River basin.
基金supported by the Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201206042)the National Natural Science Foundation of China(Grant No.41675057,91337215)
文摘A strong precipitation event caused by the southwest vortex(SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10–14 July 2012, is investigated. The SWV is examined using satellite observations from AIRS(Atmospheric Infrared Sounder), in situ measurements from the SWV intensive observation campaign, and MICAPS(Marine Interactive Computer-Aided Provisioning System) data. Analysis of this precipitation process revealed that:(1)heavy rain occurred during the development phase, and cloud water content increased significantly after the dissipation of the SWV;(2) the area with low outgoing longwave radiation values from AIRS correlated well with the SWV;(3) variation of the temperature of brightness blackbody(TBB) from AIRS reflected the evolution of the SWV, and the values of TBB reduced significantly during the SWV's development; and(4) strong temperature and water vapor inversions were noted during the development of the SWV. The moisture profile displayed large vertical variation during the SWV's puissant phase,with the moisture inversion occurring at low levels. The moisture content during the receding phase was significantly reduced compared with that during the developing and puissant phases. The vertical flux of vapor divergence explained the variation of the moisture profile. These results also indicate the potential for using AIRS products in studying severe weather over the Tibetan Plateau and its surroundings, where in situ measurements are sparse.