Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morl...Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morlet wavelet analysis were used to analyze the change trend and temporal and spatial distribution characteristics of SPI index in the past 52 years.The results show that there were more normal years in Shandong Province,and the frequency reached 38.46%.There was severe drought in the 1980s and more wet years after 2003.SPI index showed an upward trend in spring,summer and winter but a weak arid trend in autumn.In addition,intense dry weather was more frequent in summer.Spatially,the climate was normal or humid in most areas of Shandong Province.The regions with more wet years were located in the central and northeast Shandong and the peninsula,while the climate was normal in the southwest and north of Shandong.The areas with more dry years were mainly located in the northwest of Shandong Province.There was mainly local and global drought in Shandong Province,and the arid area showed a decreasing trend.In the past 52 years,Shandong Province experienced quasi-4 times of alternation between dry and wet climate.The long period of 21 a was the first main period,and the climate would be still wet in Shandong Province in the future.In terms of mutation,the climate in Shandong Province became humid after 2003,and 2003 was the mutation point.After the abrupt change,the climate changed from gradually drying to wetting.展开更多
Seasonal precipitation changes over the globe during the 20th century simulated by two versions of the Flexible Global Ocean-Atmosphere-Land System (FGOALS) model are assessed. The two model versions differ in terms...Seasonal precipitation changes over the globe during the 20th century simulated by two versions of the Flexible Global Ocean-Atmosphere-Land System (FGOALS) model are assessed. The two model versions differ in terms of their AGCM component, but the remaining parts of the system are almost identical. Both models reasonably reproduce the mean-state features of the timings of the wet and dry seasons and related precipitation amounts, with pattern correlation coefficients of 0.65-0.84 with observations. Globally averaged seasonal precipitation changes are analyzed. The results show that wet sea- sons get wetter and the annual range (precipitation difference between wet and dry seasons) increases during the 20th century in the two models, with positive trends covering most parts of the globe, which is consistent with observations. However, both models show a moistening dry season, which is opposite to observations. Analysis of the globally averaged moisture budget in the historical climate simulations of the two models shows little change in the horizontal moisture advection in both the wet and dry seasons. The globally averaged seasonal precipitation changes are mainly dominated by the changes in evaporation and vertical moisture advection. Evaporation and vertical moisture advection combine to make wet seasons wetter and enhance the annual range. In the dry season, the opposite change of evaporation and vertical moisture advection leads to an insignificant change in precipitation. Vertical moisture advection is the most important term that determines the changes in precipitation, wherein the thermodynamic component is dominant and the dynamic component tends to offset the effect of the thermodynamic component.展开更多
[Objective] The research aimed to analyze the evolution situation of dry and wet degree in Benxi area in recent 57 years.[Method] By using the annual,quarterly and monthly temperature and precipitation data in Benxi a...[Objective] The research aimed to analyze the evolution situation of dry and wet degree in Benxi area in recent 57 years.[Method] By using the annual,quarterly and monthly temperature and precipitation data in Benxi area during 1953-2009,the interdecadal variations of temperature,precipitation,dry and wet index were analyzed.[Result] The annual average temperature in Benxi area displayed the obvious increase trend,and the linear trend rate was 0.29 ℃/10 a.But the precipitation showed the obvious decrease trend,and the linear trend rate was-29.01 mm/10 a.The dry and wet index showed the decrease trend,and the linear trend rate was-33.61 mm/10 a,which closely related to the rise of temperature and the decrease of precipitation after the 1980s.[Conclusion] It showed the warming-drying development trend in Benxi area.展开更多
The water relations balance parameters of plant tissue have been determined under field condition.They are the osmotic potentials at saturation (nsat), the osmotic potentials at the turgid loss point (ntlp), modulusof...The water relations balance parameters of plant tissue have been determined under field condition.They are the osmotic potentials at saturation (nsat), the osmotic potentials at the turgid loss point (ntlp), modulusof elasticity and the water saturation deficiency at turgid loss point (Wsdtlp) of 30 adult woody species fromCerrado vegetetion (neotropical savanna) in the wet and dry seasons of Brazil. And the changing patterns of Sevalues of each species have been compared and analyzed in different methods. The mean values of nsat, ntlp, and Wsdtlp of 30 species in the wet season were -2.11 MPa, -2.50 MPa, 19.66 MPa and 10.27 % respectively.Responding to water stress in the dry season, the values of nsat of 24 species, the ntlp and the of 17 speciesthe Wsdtpl of 6 species significantly went down or up comparing with those in the wet season (P < 0.05)- Only 3species had not changed their water parameters significantly any more. The mean values of nsat, ntlp, andWsdtlp of 30 species were adjusted to be -2.28 MPa, -2.84 MPa, 18.58 MPa and 8.19 % respectively. The species that have lower values on the mt have higher vaIues on e. Contrary, the specles that have higher valueson the nsat have lower values on . The special strategies of 30 Cerrado species have been divided. into 3 typesin Cluster Analysis Method. Every type has the distinct water balance mechanism and the parameter-adjustingpattern.展开更多
General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than...General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than three months in both basins. Furthermore, an increase of rainfall variability over time is observed in the Limay river basin but it is not detected in the Neuquen river basin. There is a tendency for wet (dry) periods to take place in El Ni?o (La Ni?a) years in both basins. Rainfall in both basins, have an important annual cycle with its maximum in winter. In addition, possible causes of extreme rainy seasons over the Limay River Basin are detailed. The main result is that the behavior of low level precipitation systems displacing over the Pacific Ocean in April influences the general hydric situation during the whole rainy season. In order to establish the existence of previous circulation patterns associated with interannual SPI variability, the composite fields of wet and dry years are compared. The result is that rainfall is related to El Ni?o- Southern Oscillation (ENSO) phenomenon and circulation over the Pacific Ocean. The prediction scheme, using multiple linear regressions, showed that 46% of the SPI variance can be explained by this model. The scheme was validated by using a cross-validation method, and significant correlations are detected between observed and forecast SPI. A polynomial model is used and it little improved the linear one, explaining the 49% of the SPI variance. The analysis shows that circulation indicators are useful to predict winter rainfall behavior.展开更多
The study was conducted in three villages of North Bank Region of the Gambia in 2013 and 2014. We examined wet and dry season effects on select soil nutrient contents of upland farms in North Bank Region of the Gambia...The study was conducted in three villages of North Bank Region of the Gambia in 2013 and 2014. We examined wet and dry season effects on select soil nutrient contents of upland farms in North Bank Region of the Gambia. The objective was to evaluate changes in soil nutrient contents in both wet and dry seasons. Soil samples were collected from three RCBD upland fields with three replications at a depth of 0 - 15 cm and analyzed for pH, Soil Organic Carbon (SOC), and soil moisture content. The gravimetric method of moisture estimation was used. The results showed that soil moisture content, soil TN, and soil pH are significantly different (P < 0.05) during the two seasons. There was no significant difference in SOC between the two seasons in the study area. The study concluded that soil nutrients were more readily available during the wet season than during the dry season probably because there is more soil moisture available in the wet season that facilitates soil nutrient release. The study concludes that soil moisture has to be available in order for some select soil nutrients to be released for plant uptake.展开更多
Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography o...Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography of the dry valleys of southwestern China plays an important role in the formation of climate.However,its impact on the climate remains qualitative.In this study,eight climatic variables from 12 meteorological stations were analyzed to explore their latitudinal patterns in the wet and dry seasons from 1961 to 2019.We also quantified the effects of local topography(RH10)on the climatic variables.The results were as follows:sunshine duration,total solar radiation,average temperature,and evaporation decreased significantly,and wind speed increased significantly with increasing latitude in the annual,wet,and dry seasons(P<0.001).Relative humidity and precipitation decreased significantly with increasing latitude in the wet season(P<0.001),and no obvious change pattern was observed in the dry season.Aridity index significantly decreased(toward dryness)with increasing latitude in the wet season and increased in the dry season(P<0.001).Wind speed had a significantly positive relationship with topography(RH10)(P<0.01),whereas precipitation and aridity index were negatively associated with topography in the wet season and positively associated with topography in the dry season.Dryness was positively associated with RH10 in the wet season,and negatively in the dry season.The results of our research could provide new perspectives for understanding the relationship between topography and drought in the dry valleys of southwestern China.展开更多
Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the charact...Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.展开更多
Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze...Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze River and the Qiantangjiang River was established. The Lagrangian particle tracking was simulated to provide tracer trajectories. For convenience, the modeling area was divided into 8 subdomains and the modeling focused on March (dry season) and July (wet season). Numerical simulation and analysis indicate that the tracer trajectories originated in different subdomains are quite different. Most particles released in the mouth of the bay move outside the bay quickly and reach the farthest place at 122.5°E; while particles released in the inner part of the bay mostly remain in the same subdomain, with only minor migrations in two opposite directions along the shore. The tracer experiments also indicate that the northwest region of the bay is an area where pollutant can easily accumulate in both wet and dry seasons, and that the southeast region of the bay is another area for pollutant to accumulate in dry season because it is the main path for the contaminant.展开更多
The hypothesis that the product of discharge and concentration of nitrogen (N) in river water is equal to the atmospheric deposition was verified in the mountainous basin of the Tedori River in Japan. To verify this r...The hypothesis that the product of discharge and concentration of nitrogen (N) in river water is equal to the atmospheric deposition was verified in the mountainous basin of the Tedori River in Japan. To verify this relationship, long-term data?are required to eliminate the effect of short-term variation of the N components. The basin has very high mountains, including Mount Hakusan (2702 maltitude), which is covered with deep snow in winter. Therefore, limited data were used for the estimation of the deposition of the entire basin by assuming a linear relationship of altitude. As a result, it was found that the estimated N concentration coincided well with observed concentrations at six sites—the Shiramine and Kuwajima (upper stream), Nakajima (lower stream) and Dainichi dam, Tedori dam and Senami sites (middle stream). The seasonal variation of N concentrations was low in the snowmelt period and high in autumn through to winter. This was not due to the larger discharge in snowmelt season as it was also found that N deposition was high in winter and low in spring, which indicated a clear relationship between N concentration and monthly atmospheric deposition including N storage in snow pack.展开更多
In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon p...In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean.展开更多
Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly unders...Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly understood. To understand how DOM composition varied with urbanization, fluorescence excitation-emission matrices (EEMs) were determined for urban and non-urban waters from upstream to downstream sites along three adjacent coastal watersheds that flow into the Mediterranean Sea. Two humic DOM fluorescent components (humic-like and fulvic-like peaks) and two proteinic components (tyrosine-like and tryptophane-like peaks) were identified by EEM fluorescence. The results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land uses surrounding each body of water. Urban waters show a higher DOM fluorescence index (FI), the highest fluorescence intensity of protein-like manifested also by BIX values, and a lower value of the humification index (HIX) than non-urban waters which were dominated by allochthonous inputs. In addition, the EEM was compared in dry and wet season where higher DOM amounts and FI appeared in summer due to autochthonous production coming from algae growth compared to allochthonous input from rainfall dominated in wet season. The concentration of DOC increased from upstream to downstream for the three rivers, especially Beirut River. The increase in DOC values was observed in both dry and wet seasons by 39 and 19 times respectively compared to upstream (0.93 - 0.91 mgC/L).展开更多
基金Supported by the Special Project for the Grass-roots Units of Shandong Meteorological Bureau(2023SDJC14).
文摘Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morlet wavelet analysis were used to analyze the change trend and temporal and spatial distribution characteristics of SPI index in the past 52 years.The results show that there were more normal years in Shandong Province,and the frequency reached 38.46%.There was severe drought in the 1980s and more wet years after 2003.SPI index showed an upward trend in spring,summer and winter but a weak arid trend in autumn.In addition,intense dry weather was more frequent in summer.Spatially,the climate was normal or humid in most areas of Shandong Province.The regions with more wet years were located in the central and northeast Shandong and the peninsula,while the climate was normal in the southwest and north of Shandong.The areas with more dry years were mainly located in the northwest of Shandong Province.There was mainly local and global drought in Shandong Province,and the arid area showed a decreasing trend.In the past 52 years,Shandong Province experienced quasi-4 times of alternation between dry and wet climate.The long period of 21 a was the first main period,and the climate would be still wet in Shandong Province in the future.In terms of mutation,the climate in Shandong Province became humid after 2003,and 2003 was the mutation point.After the abrupt change,the climate changed from gradually drying to wetting.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 41125017 and 41330423)
文摘Seasonal precipitation changes over the globe during the 20th century simulated by two versions of the Flexible Global Ocean-Atmosphere-Land System (FGOALS) model are assessed. The two model versions differ in terms of their AGCM component, but the remaining parts of the system are almost identical. Both models reasonably reproduce the mean-state features of the timings of the wet and dry seasons and related precipitation amounts, with pattern correlation coefficients of 0.65-0.84 with observations. Globally averaged seasonal precipitation changes are analyzed. The results show that wet sea- sons get wetter and the annual range (precipitation difference between wet and dry seasons) increases during the 20th century in the two models, with positive trends covering most parts of the globe, which is consistent with observations. However, both models show a moistening dry season, which is opposite to observations. Analysis of the globally averaged moisture budget in the historical climate simulations of the two models shows little change in the horizontal moisture advection in both the wet and dry seasons. The globally averaged seasonal precipitation changes are mainly dominated by the changes in evaporation and vertical moisture advection. Evaporation and vertical moisture advection combine to make wet seasons wetter and enhance the annual range. In the dry season, the opposite change of evaporation and vertical moisture advection leads to an insignificant change in precipitation. Vertical moisture advection is the most important term that determines the changes in precipitation, wherein the thermodynamic component is dominant and the dynamic component tends to offset the effect of the thermodynamic component.
文摘[Objective] The research aimed to analyze the evolution situation of dry and wet degree in Benxi area in recent 57 years.[Method] By using the annual,quarterly and monthly temperature and precipitation data in Benxi area during 1953-2009,the interdecadal variations of temperature,precipitation,dry and wet index were analyzed.[Result] The annual average temperature in Benxi area displayed the obvious increase trend,and the linear trend rate was 0.29 ℃/10 a.But the precipitation showed the obvious decrease trend,and the linear trend rate was-29.01 mm/10 a.The dry and wet index showed the decrease trend,and the linear trend rate was-33.61 mm/10 a,which closely related to the rise of temperature and the decrease of precipitation after the 1980s.[Conclusion] It showed the warming-drying development trend in Benxi area.
文摘The water relations balance parameters of plant tissue have been determined under field condition.They are the osmotic potentials at saturation (nsat), the osmotic potentials at the turgid loss point (ntlp), modulusof elasticity and the water saturation deficiency at turgid loss point (Wsdtlp) of 30 adult woody species fromCerrado vegetetion (neotropical savanna) in the wet and dry seasons of Brazil. And the changing patterns of Sevalues of each species have been compared and analyzed in different methods. The mean values of nsat, ntlp, and Wsdtlp of 30 species in the wet season were -2.11 MPa, -2.50 MPa, 19.66 MPa and 10.27 % respectively.Responding to water stress in the dry season, the values of nsat of 24 species, the ntlp and the of 17 speciesthe Wsdtpl of 6 species significantly went down or up comparing with those in the wet season (P < 0.05)- Only 3species had not changed their water parameters significantly any more. The mean values of nsat, ntlp, andWsdtlp of 30 species were adjusted to be -2.28 MPa, -2.84 MPa, 18.58 MPa and 8.19 % respectively. The species that have lower values on the mt have higher vaIues on e. Contrary, the specles that have higher valueson the nsat have lower values on . The special strategies of 30 Cerrado species have been divided. into 3 typesin Cluster Analysis Method. Every type has the distinct water balance mechanism and the parameter-adjustingpattern.
文摘General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than three months in both basins. Furthermore, an increase of rainfall variability over time is observed in the Limay river basin but it is not detected in the Neuquen river basin. There is a tendency for wet (dry) periods to take place in El Ni?o (La Ni?a) years in both basins. Rainfall in both basins, have an important annual cycle with its maximum in winter. In addition, possible causes of extreme rainy seasons over the Limay River Basin are detailed. The main result is that the behavior of low level precipitation systems displacing over the Pacific Ocean in April influences the general hydric situation during the whole rainy season. In order to establish the existence of previous circulation patterns associated with interannual SPI variability, the composite fields of wet and dry years are compared. The result is that rainfall is related to El Ni?o- Southern Oscillation (ENSO) phenomenon and circulation over the Pacific Ocean. The prediction scheme, using multiple linear regressions, showed that 46% of the SPI variance can be explained by this model. The scheme was validated by using a cross-validation method, and significant correlations are detected between observed and forecast SPI. A polynomial model is used and it little improved the linear one, explaining the 49% of the SPI variance. The analysis shows that circulation indicators are useful to predict winter rainfall behavior.
文摘The study was conducted in three villages of North Bank Region of the Gambia in 2013 and 2014. We examined wet and dry season effects on select soil nutrient contents of upland farms in North Bank Region of the Gambia. The objective was to evaluate changes in soil nutrient contents in both wet and dry seasons. Soil samples were collected from three RCBD upland fields with three replications at a depth of 0 - 15 cm and analyzed for pH, Soil Organic Carbon (SOC), and soil moisture content. The gravimetric method of moisture estimation was used. The results showed that soil moisture content, soil TN, and soil pH are significantly different (P < 0.05) during the two seasons. There was no significant difference in SOC between the two seasons in the study area. The study concluded that soil nutrients were more readily available during the wet season than during the dry season probably because there is more soil moisture available in the wet season that facilitates soil nutrient release. The study concludes that soil moisture has to be available in order for some select soil nutrients to be released for plant uptake.
基金supported by the National Key Research and Development Program of China(2017YFC0505105)。
文摘Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography of the dry valleys of southwestern China plays an important role in the formation of climate.However,its impact on the climate remains qualitative.In this study,eight climatic variables from 12 meteorological stations were analyzed to explore their latitudinal patterns in the wet and dry seasons from 1961 to 2019.We also quantified the effects of local topography(RH10)on the climatic variables.The results were as follows:sunshine duration,total solar radiation,average temperature,and evaporation decreased significantly,and wind speed increased significantly with increasing latitude in the annual,wet,and dry seasons(P<0.001).Relative humidity and precipitation decreased significantly with increasing latitude in the wet season(P<0.001),and no obvious change pattern was observed in the dry season.Aridity index significantly decreased(toward dryness)with increasing latitude in the wet season and increased in the dry season(P<0.001).Wind speed had a significantly positive relationship with topography(RH10)(P<0.01),whereas precipitation and aridity index were negatively associated with topography in the wet season and positively associated with topography in the dry season.Dryness was positively associated with RH10 in the wet season,and negatively in the dry season.The results of our research could provide new perspectives for understanding the relationship between topography and drought in the dry valleys of southwestern China.
基金This research was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2022QN04003)the Central Government to Guide Local Scientific and Technological Development(2021ZY0031).
文摘Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.
基金Supported by National Natural Science Foundation of China (No 40576080)National High Technology Research and Development Program of China ("863" Program, No 2007AA12Z182)
文摘Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze River and the Qiantangjiang River was established. The Lagrangian particle tracking was simulated to provide tracer trajectories. For convenience, the modeling area was divided into 8 subdomains and the modeling focused on March (dry season) and July (wet season). Numerical simulation and analysis indicate that the tracer trajectories originated in different subdomains are quite different. Most particles released in the mouth of the bay move outside the bay quickly and reach the farthest place at 122.5°E; while particles released in the inner part of the bay mostly remain in the same subdomain, with only minor migrations in two opposite directions along the shore. The tracer experiments also indicate that the northwest region of the bay is an area where pollutant can easily accumulate in both wet and dry seasons, and that the southeast region of the bay is another area for pollutant to accumulate in dry season because it is the main path for the contaminant.
文摘The hypothesis that the product of discharge and concentration of nitrogen (N) in river water is equal to the atmospheric deposition was verified in the mountainous basin of the Tedori River in Japan. To verify this relationship, long-term data?are required to eliminate the effect of short-term variation of the N components. The basin has very high mountains, including Mount Hakusan (2702 maltitude), which is covered with deep snow in winter. Therefore, limited data were used for the estimation of the deposition of the entire basin by assuming a linear relationship of altitude. As a result, it was found that the estimated N concentration coincided well with observed concentrations at six sites—the Shiramine and Kuwajima (upper stream), Nakajima (lower stream) and Dainichi dam, Tedori dam and Senami sites (middle stream). The seasonal variation of N concentrations was low in the snowmelt period and high in autumn through to winter. This was not due to the larger discharge in snowmelt season as it was also found that N deposition was high in winter and low in spring, which indicated a clear relationship between N concentration and monthly atmospheric deposition including N storage in snow pack.
基金supported by the Korea Foundation for International Cooperation of Science and Technology (KICOS) througha grant provided by the Korean Ministry of Science and Technology (MOST) in 2009, and the Grant of NIMR-2009-B-2 at the National Institute of Meteorological Research, Korea Meteorological Administration
文摘In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean.
文摘Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly understood. To understand how DOM composition varied with urbanization, fluorescence excitation-emission matrices (EEMs) were determined for urban and non-urban waters from upstream to downstream sites along three adjacent coastal watersheds that flow into the Mediterranean Sea. Two humic DOM fluorescent components (humic-like and fulvic-like peaks) and two proteinic components (tyrosine-like and tryptophane-like peaks) were identified by EEM fluorescence. The results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land uses surrounding each body of water. Urban waters show a higher DOM fluorescence index (FI), the highest fluorescence intensity of protein-like manifested also by BIX values, and a lower value of the humification index (HIX) than non-urban waters which were dominated by allochthonous inputs. In addition, the EEM was compared in dry and wet season where higher DOM amounts and FI appeared in summer due to autochthonous production coming from algae growth compared to allochthonous input from rainfall dominated in wet season. The concentration of DOC increased from upstream to downstream for the three rivers, especially Beirut River. The increase in DOC values was observed in both dry and wet seasons by 39 and 19 times respectively compared to upstream (0.93 - 0.91 mgC/L).